Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists Spy on Lithium Ions

Above (a), the nanobattery setup inside AC-STEM. Below (b), atomic resolution imaging of the front line of lithium ions entering a SnO2 nanowire. The images show the parallel Li-ion channels and the formation of dislocations at the tip of the channels.
Above (a), the nanobattery setup inside AC-STEM. Below (b), atomic resolution imaging of the front line of lithium ions entering a SnO2 nanowire. The images show the parallel Li-ion channels and the formation of dislocations at the tip of the channels.

Abstract:
Lithium ion batteries are at the energetic heart of almost all things tech, from cell phones to tablets to electric vehicles. That's because they are a proven technology, light, long-lasting and powerful. But they aren't perfect.

Scientists Spy on Lithium Ions

Houghton, MI | Posted on July 8th, 2013

"You might get seven or eight hours out of your iPhone on one charge, maybe a day," says Reza Shahbazian-Yassar, an associate professor of mechanical engineering at Michigan Technological University. "This is not enough for many of us. A fully electric car, like the Nissan Leaf, can go up to 100 miles on a single charge. To appeal to a mass market, it should be about 300 miles. We want to increase the power of these systems."

To wring more power out of lithium ion batteries, scientists are experimenting with different materials and designs. However, the important action in a battery occurs at the atomic level, and it's been virtually impossible to find out exactly what's happening at such a scale. Now, Yassar has developed a device that allows researchers to eavesdrop on individual lithium ions—and potentially develop the next generation of batteries.

Batteries are pretty simple. They have three major components: an anode, a cathode and electrolyte between the two. In lithium batteries, lithium ions travel back and forth between the anode and cathode as the battery discharges and is charged up again. The anodes of lithium-ion batteries are usually made of graphite, but scientists are testing other materials to see if they can last longer.

"As soon as lithium moves into an electrode, it stresses the material, eventually resulting in failure," said Yassar. "That's why many of these materials may be able to hold lots of lithium, but they end up breaking down quickly.

"If we were able to observe these changes in the host electrode, particularly at the very early stage of charging, we could come up with strategies to fix that problem."

Ten years ago, observing light elements such as lithium or hydrogen at the atomic level would have been out of the question. Now, however, it's possible to see light atoms with an aberration corrected scanning transmission electron microscope (AC-STEM). Yassar's team was able to use one at the University of Illinois at Chicago, where he is a visiting associate professor.

To determine how the host electrode changes as lithium ions enter it, the team built a nano-battery within the AC-STEM microscope using a promising new electrode material, tin oxide, or SnO2. Then, they watched it charge.

"We wanted to monitor the changes in the tin oxide at the very frontier of lithium-ion movement within the SnO2 electrode, and we did," Yassar said. "We were able to observe how the individual lithium ions enter the electrode."

The lithium ions moved along specific channels as they flowed into the tin oxide crystals instead of randomly walking into the host atoms. Based on that data, the researchers were able to calculate the strain the ions were placing on the electrodes.

The discovery has prompted inquiries from industries and national labs interested in using his atomic-resolution capability in their own battery-development work.

"It's very exciting," Yassar said. "There are so many options for electrodes, and now we have this new tool that can tell us exactly what's happening with them. Before, we couldn't see what was going on; we were just guessing."

An article on the research, "Atomic Scale Observation of Lithiation Reaction Front in Nanoscale SnO2 Materials," was published online June 3 in ACS Nano. In addition to Yassar, the coauthors are mechanical engineering graduate student Hasti Asayesh-Ardakani and research associate Anmin Nie of Michigan Tech; Li-Yong Gan, Yingchun Cheng and Udo Schwingeschlogl of King Abdullah University of Science and Technology, Saudi Arabia; Qianquin Li, Cezhou Dong and Tao Wang of Zhejiang University, China; and Farzad Mashayek and Robert Klie of the University of Illinois at Chicago.

####

About Michigan Technological University
Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences. - See more at: http://www.mtu.edu/news/stories/2013/july/story92744.html#sthash.cMSWQZl7.dpuf

For more information, please click here

Contacts:
Marcia Goodrich
906-487-2343

Copyright © Michigan Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article on the research, “Atomic Scale Observation of Lithiation Reaction Front in Nanoscale SnO2 Materials.”:

Related News Press

News and information

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Imaging

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Discoveries

Creating new materials with quantum effects for electronics January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Asteroid Mining 101: A New Book by World-Renowned Expert Dr. John S. Lewis - Exclusive Sneak-Peek Opportunity for Book Reviewers and Media January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Tools

Hiden Gas Analysers at PITTCON 2015 | Visit us on Booth No. 1127 January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Automotive/Transportation

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Materials - Efficient catalysts... January 13th, 2015

Waterloo chemist one step closer to a new generation of electric car battery January 12th, 2015

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Nexeon Board Changes Announced January 29th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE