Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New iron catalyst promises green future for hydrogenation

Iron nanoparticles (diameter: 90 micrometers)
Iron nanoparticles (diameter: 90 micrometers)

Abstract:
A new iron nanoparticle catalyst developed by researchers in Japan and Canada promises to drastically improve the efficiency of hydrogenation, a key chemical process used in a wide array of industrial applications. Cleaner, safer and cheaper than traditional rare metal-based catalysts, the new, more environmentally friendly technique marks a breakthrough for the emerging field of green chemistry.

New iron catalyst promises green future for hydrogenation

Wako, Japan | Posted on June 28th, 2013

Hydrogenation, the reaction of molecular hydrogen with another compound or element, is one of the world's most highly studied chemical reactions, with industrial applications ranging from petrochemistry, to food production, to pharmaceuticals.

Most such applications of hydrogenation use rare metal catalysts such as palladium or platinum to speed up chemical reactions. While highly efficient, these metals are expensive and limited in supply, posing environmental and economic challenges.

To get around these problems, researchers at McGill University, the RIKEN Center for Sustainable Resource Science and the Institute for Molecular Science developed their new technique using iron, a much less expensive and far more abundant element. Iron has been ruled out in the past due to the fact that it rusts in the presence of oxygen and water, negating its catalytic effect.

The new technique, described in a paper published in the journal Green Chemistry, produces iron nanoparticles directly inside a polymer matrix, which protects the iron surface from rusting while allowing the reactants to reach it and react. The resulting system of polymer-stabilized iron nanoparticles in water is the first of its kind: a safe, cheap and environmentally friendly catalyst system for hydrogenation reactions.

"Our aim is to develop iron-based catalysts not only for hydrogenation but also a variety of organic transformations that can be used in future industrial applications," explains RIKEN researcher Dr. Yoichi M. A. Yamada, one of the authors of the paper. "If rare metal-based catalysts can be replaced by iron-based ones, then we can overcome our costly and dangerous dependency on rare metals."

Full bibliographic information

Reuben Hudson, Go Hamasaka, Takao Osako, Yochi M. A. Yamada, Chao-Jun Li, Yasuhiro Uozumi, and Audrey Moores. Highly Efficient Iron(0) Nanoparticle-Catalyzed Hydrogenation in Water in Flow, Green Chemistry. doi:10.1039/C3GC40789F

####

About RIKEN
RIKEN is Japan’s flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN’s advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Reach us on Twitter: @rikenresearch

For more information, please click here

Contacts:
Juliette Savin
RIKEN
Global Relations and Research Coordination Office

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Chemistry

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Highlights for 2014 national meeting of world’s largest scientific society July 8th, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Industrial

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Non-Enzyme Sensor Detects Lead, Hydrogen Peroxide July 10th, 2014

New Method Introduced for Synthesis of Hydroxyapatite Nanoparticles July 5th, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Research partnerships

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE