Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemists work to desalt the ocean for drinking water, 1 nanoliter at a time: Microscale method requires so little energy that it can run on a store-bought battery

A prototype "water chip" was developed by researchers at the University of Texas at Austin in collaboration with Okeanos Technologies.

Credit: Courtesy Okeanos Technologies
A prototype "water chip" was developed by researchers at the University of Texas at Austin in collaboration with Okeanos Technologies.

Credit: Courtesy Okeanos Technologies

Abstract:
By creating a small electrical field that removes salts from seawater, chemists at The University of Texas at Austin and the University of Marburg in Germany have introduced a new method for the desalination of seawater that consumes less energy and is dramatically simpler than conventional techniques. The new method requires so little energy that it can run on a store-bought battery.

Chemists work to desalt the ocean for drinking water, 1 nanoliter at a time: Microscale method requires so little energy that it can run on a store-bought battery

Austin, TX | Posted on June 27th, 2013

The process evades the problems confronting current desalination methods by eliminating the need for a membrane and by separating salt from water at a microscale.

The technique, called electrochemically mediated seawater desalination, was described last week in the journal Angewandte Chemie. The research team was led by Richard Crooks of The University of Texas at Austin and Ulrich Tallarek of the University of Marburg. It's patent-pending and is in commercial development by startup company Okeanos Technologies.

"The availability of water for drinking and crop irrigation is one of the most basic requirements for maintaining and improving human health," said Crooks, the Robert A. Welch Chair in Chemistry in the College of Natural Sciences. "Seawater desalination is one way to address this need, but most current methods for desalinating water rely on expensive and easily contaminated membranes. The membrane-free method we've developed still needs to be refined and scaled up, but if we can succeed at that, then one day it might be possible to provide fresh water on a massive scale using a simple, even portable, system."

This new method holds particular promise for the water-stressed areas in which about a third of the planet's inhabitants live. Many of these regions have access to abundant seawater but not to the energy infrastructure or money necessary to desalt water using conventional technology. As a result, millions of deaths per year in these regions are attributed to water-related causes.

"People are dying because of a lack of freshwater," said Tony Frudakis, founder and CEO of Okeanos Technologies. "And they'll continue to do so until there is some kind of breakthrough, and that is what we are hoping our technology will represent."

To achieve desalination, the researchers apply a small voltage (3.0 volts) to a plastic chip filled with seawater. The chip contains a microchannel with two branches. At the junction of the channel an embedded electrode neutralizes some of the chloride ions in seawater to create an "ion depletion zone" that increases the local electric field compared with the rest of the channel. This change in the electric field is sufficient to redirect salts into one branch, allowing desalinated water to pass through the other branch.

"The neutralization reaction occurring at the electrode is key to removing the salts in seawater," said Kyle Knust, a graduate student in Crooks' lab and first author on the paper.

Like a troll at the foot of the bridge, the ion depletion zone prevents salt from passing through, resulting in the production of freshwater.

Thus far Crooks and his colleagues have achieved 25 percent desalination. Although drinking water requires 99 percent desalination, they are confident that goal can be achieved.

"This was a proof of principle," said Knust. "We've made comparable performance improvements while developing other applications based on the formation of an ion depletion zone. That suggests that 99 percent desalination is not beyond our reach."

The other major challenge is to scale up the process. Right now the microchannels, about the size of a human hair, produce about 40 nanoliters of desalted water per minute. To make this technique practical for individual or communal use, a device would have to produce liters of water per day. The authors are confident that this can be achieved as well.

If these engineering challenges are surmounted, they foresee a future in which the technology is deployed at different scales to meet different needs.

"You could build a disaster relief array or a municipal-scale unit," said Frudakis. "Okeanos has even contemplated building a small system that would look like a Coke machine and would operate in a standalone fashion to produce enough water for a small village."

The fundamental scientific breakthroughs that led to this advance were primarily supported by the Office of Basic Energy Sciences in the U.S. Department of Energy. Okeanos Technologies is funded by venture capital and grants from the U.S. Environmental Protection Agency. The intellectual property is owned by The University of Texas at Austin through the Office of Technology Commercialization (OTC). In the event of eventual profits, patent holders, including Crooks and Knust, will be paid according to the OTC's standard licensing agreement. Okeanos Technologies is also currently supporting Knust's stipend and tuition via a gift to UT.

####

For more information, please click here

Contacts:
Richard Crooks

512-475-8639

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Desalination Microchannel Video:

Related News Press

News and information

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Pittcon News: Renishaw adds to the comprehensive imaging options available with its inVia confocal Raman microscope January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Videos/Movies

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Chemistry

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Discoveries

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Announcements

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Liquipel Receives US Patent on Environmentally Friendly, Watersafe Treatment of Electronics: U.S. Patent Office Finds Watersafe™ Treatment Covers Cell Phones, Smart Phones, Tablets, Computers and More January 5th, 2015

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Water

Nanoparticles for clean drinking water January 17th, 2015

Going with the flow January 16th, 2015

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

Liquids and glasses relax, too. But not like you thought January 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE