Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spinning up antibacterial silver on glass

Abstract:
The antibacterial effects of silver are well established. Now, researchers at Yonsei University in Seoul, Republic of Korea, have developed a technique to coat glass with a layer of silver ions that can prevent growth of pathogenic bacteria including Escherichia coli, Salmonella typhimurium and Campylobacter jejuni. The technology could be used to protect medical equipment and be particularly useful for applications in disaster recovery and the military environment.

Spinning up antibacterial silver on glass

Seoul, South Korea | Posted on June 27th, 2013

Materials scientist Se-Young Choi and colleagues Cheol-Young Kim, Yu-Ri Choi and Kwang-Mahn Kim, explain in the International Journal of Nanotechnology how silver has been known to be an antibacterial substance since the middle of the nineteenth century. It has found applications in bactericidal formulations for medical instruments and even odor-destroying socks

A big advantage of the use of this substance rather than organic agents against bacteria is that bacteria are yet to evolve resistance to it whereas genetic mutations that lead to proteins that can assimilate and degrade organic compounds frequently arise. As such, silver solutions have been used widely as disinfectants, in water purification in and in dentistry. Scientists have demonstrated that silver ions can latch on to sulfur-containing thiol groups in bacterial biomolecules disrupting their activity and thereby killing the microbes. Finding a way to add a permanent silver ion coating to glass would expand the antibacterial repertoire much further allowing a wider range of medical instruments, drinking vessels and other equipment to be kept sanitary regardless of working conditions.

The Seoul team has now developed a way to "spin" coat glass with silver present in a so-called sol-gel, a type of gelatinous solution within which are dispersed dissolved silver ions present as their nitrate salt. Spinning takes place at 200 Celsius with a rotation rate of 2000 revolutions per minute. They used atomic force microscopy to demonstrate how a substantial coating could be formed on glass and then successfully tested its activity against various food-poisoning bacteria. The resulting coated glass is more than 90 percent as transparent as uncoated glass bending strength tests show it to be slightly toughened by the presence of the silver coating.

"There are lots of bacteria that can cause serious food poisoning in the military equipment and environments," Choi explains. "So, the antimicrobial activity of the silver ion containing film showed its potential for use as a coating for medical devices and military equipment." The team suggests that the same approach could be used to spin coat other smooth materials.

"Fabrication and antibacterial properties of silver-coated glass substrate against Escherichia coli, Salmonella typhimurium, and Campylobacter jejuni" in Int. J. Nanotechnol, 2013, 10, 643-652

####

For more information, please click here

Contacts:
Albert Ang

Copyright © Inderscience Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Govt.-Legislation/Regulation/Funding/Policy

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Military

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project