Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ben-Gurion University of the Negev and The University of Chicago Collaboration Targets Water Resource Innovations -- More than $1 Million Committed for Five Inaugural Projects --

BGU President Prof. Rivka Carmi and UChicago President Prof. Robert Zimmer sign a water research agreement in the presence of President Shimon Peres of Israel and Mayor Rahm Emanuel, City of Chicago, on Sunday June 23, 2013 at the President's Residence in Jerusalem.
Photo Credit: Dani Machlis/BGU
BGU President Prof. Rivka Carmi and UChicago President Prof. Robert Zimmer sign a water research agreement in the presence of President Shimon Peres of Israel and Mayor Rahm Emanuel, City of Chicago, on Sunday June 23, 2013 at the President's Residence in Jerusalem.

Photo Credit: Dani Machlis/BGU

Abstract:
The University of Chicago (UChicago) and Ben-Gurion University of the Negev (BGU) will begin funding a series of ambitious research collaborations that apply the latest discoveries in nanotechnology to create new materials and processes for making clean, fresh drinking water more plentiful and less expensive by 2020.

Ben-Gurion University of the Negev and The University of Chicago Collaboration Targets Water Resource Innovations -- More than $1 Million Committed for Five Inaugural Projects --

Beer-Sheva, Israel | Posted on June 26th, 2013

The announcement came on Sunday following a meeting in Jerusalem among Israeli President Shimon Peres, Chicago Mayor Rahm Emanuel, University of Chicago President Robert J. Zimmer, BGU President Rivka Carmi and leading scientists in the field. The joint projects will explore innovative solutions at the water-energy nexus, developing more efficient ways of using water to produce energy and using energy to treat and deliver clean water.

The University of Chicago also brings to the effort two powerful research partners already committed to clean-water research, the Argonne National Laboratory in Lemont, Illinois, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

"We feel it is critical to bring outstanding scientists together to address water resource challenges that are being felt around the world, and will only become more acute over time," said Zimmer.

"Our purification challenges in the Great Lakes region right now are different from the scarcity issues some of our colleagues at Ben-Gurion University of the Negev are addressing, but our combined experience will be a tremendous asset in turning early-stage technologies into innovative solutions that may have applications far beyond local issues," he said.

"Clean, plentiful water is a strategic issue in the Middle East and the world at large, and a central research focus of our university for more than three decades," said Carmi. "We believe that this partnership will enhance state-of-the-art science in both universities, while having a profound effect on the sustainable availability of clean water to people around the globe."

The first wave of research proposals include fabricating new materials tailored to remove contaminants, bacteria, viruses, and salt from drinking water at a fraction of the cost of current technologies; biological engineering that will help plants maximize their own drought-resistance mechanisms; and polymers that can change the water retention properties of soil in agriculture.

UChicago, BGU and Argonne have jointly committed more than $1 million in seed money over the next two years to support at least five inaugural projects, with the first projects getting underway this fall.

One proposed project would attempt to devise multi-functional and anti-fouling membranes for water purification. These membranes, engineered at the molecular level, could be switched or tuned to remove a wide range of biological and chemical contaminants and prevent the formation of membrane-fouling bacterial films. Keeping those membranes free of fouling would extend their useful lives and decrease energy usage while reducing the operational cost of purifying water.

Another proposal focuses on developing polymers for soil infusion or seed coatings to promote water retention. Such polymers conjure visions of smart landscapes that can substantially promote agricultural growth while reducing irrigation needs.

Officials from both the U.S. and Israel hailed the collaboration as an example of the potential for collaborative innovation that can improve quality of life and boost economic vitality.

Mayor Emanuel said, "Chicago's worldwide leadership in water management continues to grow as we invest in our water infrastructure, creating jobs for our residents and economic activity in our neighborhoods. I strongly support this partnership and I look forward to working with leading institutions like BGU and University of Chicago to create innovations and opportunities for the future."

The institutions have moved swiftly following the signing of an initial memorandum of understanding in Chicago on March 8, 2013 to explore a research partnership that would innovate water production and purification technologies to meet a growing thirst for fresh water resources globally. Leading the efforts are Matthew Tirrell, the Pritzker Director of UChicago's Institute for Molecular Engineering, and Moshe Gottlieb, BGU's Frankel Professor of Chemical Engineering.

For its part, the Institute for Molecular Engineering will commit tens of millions of dollars to the molecular engineering of water resources over the next decade. The institute is pursuing the molecular engineering of water resources as one of five emerging research themes, with plans to hire up to six faculty members specializing in this area. BGU researchers will have a significant presence at Hyde Park to further facilitate the collaborations.

"The Institute for Molecular Engineering aims to bring molecular-level science to technological problems of global importance," Tirrell said. "Water technology clearly meets that standard, and the institute brings new ideas for materials, membranes, biotechnologies, and catalytic technologies, among other approaches, that could address major needs in this domain."

Tirrell's and Gottlieb's teams met for two days in Israel in April to explore their mutual interests in water chemistry, materials science, flow in soils and other porous substances, microbiology, and nanotechnology. The first day of meetings took place on BGU's main campus in Beer-Sheva. The researchers reconvened for a second day at BGU's Sede Boqer campus, site of the Zuckerberg Institute for Water Research.

The Israeli government founded BGU with a mandate to spearhead the development of the Negev Desert. BGU has worked at the forefront of water-related research for more than four decades, having developed several innovative technologies in the field. Work at the Zuckerberg Institute for Water Research has helped make it possible for Israel to produce more than 60 percent of its fresh water needs by desalination.

Tirrell's team includes researchers at Argonne, which UChicago manages for the United States Department of Energy. Argonne has assembled state-of-the-art infrastructure and gathered extensive scientific expertise for the study of clean water technologies. The laboratory's water-research portfolio includes projects pertaining to wastewater discharges into Lake Michigan, the effects of Glen Canyon Dam operations on the Colorado River through the Grand Canyon, and carbon tetrachloride contamination of surface and groundwater in Kansas, Missouri and Nebraska.

Researchers at the Marine Biological Laboratory at Woods Hole have been prominent in bringing problems of water contamination to the attention of scientists and the public. MBL brings additional strengths in biological sciences and the marine environment to this developing partnership. UChicago and MBL recently signed a landmark affiliation, effective July 1, joining the leadership and scientific eminence of the two institutions, while bringing outstanding researchers together for innovative collaborations and education programs in microbial sciences, molecular engineering and related areas.

####

About American Associates, Ben-Gurion University of the Negev (AABGU)
American Associates, Ben-Gurion University of the Negev (AABGU) plays a vital role in sustaining David Ben-Gurion's vision, creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. With some 20,000 students on campuses in Beer-Sheva, Sede Boqer and Eilat in Israel's southern desert, BGU is a university with a conscience, where the highest academic standards are integrated with community involvement, committed to sustainable development of the Negev. AABGU is headquartered in Manhattan and has nine regional offices throughout the U.S., including one in Chicago.

For more information, please click here

Copyright © American Associates, Ben-Gurion University of the Negev

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Laboratories

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Water

Atomic scale pipes available on demand and by design September 9th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Alliances/Trade associations/Partnerships/Distributorships

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

SEMI and MSIG Join Together in Strategic Association Partnership: MEMS & Sensors Industry Group Brings New MEMS and Sensors Community to SEMI to Increase Combined Member Value September 15th, 2016

Leti and Oberthur Technologies Partner to Explore New Solutions in Fast-growing Digital Era September 12th, 2016

Synopsys Joins GLOBALFOUNDRIES’ FDXcelerator Partner Program to Enable Innovative Designs Using the FD-SOI Process: Program Gives Synopsys Access to GLOBALFOUNDRIES’ FDX Portfolio and Provides Customers with Tools that Support the Differentiated Features of FD-SOI September 8th, 2016

Research partnerships

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic