Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Institute of Water Resources & Water Supply at TU-Hamburg-Harburg implements Nanoparticle Tracking Analysis to characterize colloids in water

PhD student, Martin Schulz, at the University of Harburg with his NanoSight LM10 NTA system used for the characterization of colloids in water.
PhD student, Martin Schulz, at the University of Harburg with his NanoSight LM10 NTA system used for the characterization of colloids in water.

Abstract:
NanoSight reports on how Nanoparticle Tracking Analysis, NTA, is being implemented for the further characterization of natural colloids (inorganic and organic) at the Institute of Water Resources and Water Supply at the Technical University Hamburg-Harburg in Germany.

The Institute of Water Resources & Water Supply at TU-Hamburg-Harburg implements Nanoparticle Tracking Analysis to characterize colloids in water

Salisbury, UK | Posted on June 25th, 2013

Inorganic and organic colloids are widespread in aquatic systems, where they influence many water quality treatment processes. Until recently there was a lack of an adequate analysis technique to measure the size fraction below 1000 nm. The research group of Professor Mathias Ernst of the Institute of Water Resources and Water Supply at the Technical University Hamburg-Harburg has adopted the use of NanoSight's NTA technique to provide new insights into water quality.

PhD student Martin Schulz began his research at the Berlin Centre of Competence for Water, where he first used NTA to assess different water treatment processes, in particular looking at particle & colloid removal and water purification methods (e.g. coagulation and ozonation). His work focused on membrane filtration where he encountered the problem of membrane-fouling when colloids would block the pores of the membrane. Schulz used NTA to predict the fouling potential of a water sample, thus providing time for the treatment plant to react with different pre-treatment options.

Schulz describes the work of the Institute of Water Resources & Water Supply at TU-Hamburg-Harburg: "The institute provides professional support to water companies and our industry partners for the optimization of processes, problem solving and innovation. We expect to offer NTA as a support tool to regional water companies who have problems with particles & colloids in their treatment processes and water distribution systems."

Other techniques have been applied to this application with mixed success. These include LC-OCD (liquid chromatography-organic carbon detection) and flow cytometry (using fluorescence markers). NTA has proved to be the ideal complement as it is only by combining all of these techniques that full characterization of a water sample over a broad size range can be established.

Speaking of the reasons why he feels NTA is ideal for this work, Schulz says "NTA is perfect for the concentration range of water and wastewater samples. It provides reliable size detection in polydisperse samples which occur in almost all natural water samples. The fast and precise detection of the smallest colloid fraction (< 200 nm) is a huge advantage. It also has potential for making on-line measurements. In simple words, we use NTA as an additional water quality parameter."

To find out about the company and to learn more about particle characterization using NanoSight's unique Nanoparticle Tracking Analysis solutions, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10 nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements are similarly particle-specific. It is this particle-by-particle methodology that takes NTA beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

This simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 600 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 800+ third party papers citing NanoSight results. NanoSight's leadership position in nanoparticle characterization is consolidated further with publication of an ASTM International standard, ASTM E2834, which describes the NTA methodology for detection and analysis of nanoparticles.

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT UK
T +44(0)1980 676060
F +44(0)1980 624703
www.nanosight.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Tools

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Water

Atomic scale pipes available on demand and by design September 9th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

New-Contracts/Sales/Customers

SENAI Outfits New Tribology Lab with Bruker UMT TriboLab Systems: Brazil’s National Service for Industrial Training Invests in Six Bruker Tribometers September 14th, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEI’s Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic