Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Haydale Announce Breakthrough Graphene Inks Based on HDPlas™ Commercial Technology to Accelerate Graphene Applications

Abstract:
Haydale, a leader in facilitating the commercial application of graphenes announces that with its development partner, Gwent Electronic Materials ("GEM"), it has developed graphene based inks with properties that now quickly enable its customers to use graphene in a wide range of applications. This breakthrough has been possible due to the ability of Haydale to supply quality graphenes in commercial quantities at a viable price.

Haydale Announce Breakthrough Graphene Inks Based on HDPlas™ Commercial Technology to Accelerate Graphene Applications

London, UK | Posted on June 25th, 2013

These new graphene inks enable the commercialisation in the near future of smart packaging, printed batteries, electrochemical sensors, flexible displays and potentially touch screens. The inks are launched today at the Graphene Commercialisation & Applications Summit in London.

Haydale's Graphene based inks were first announced at the Printed Electronics USA conference in December 2012, since then Haydale has been working in close collaboration with specialist ink manufacturer GEM. This has resulted in the rapid improvement of the ink formulations, and enhancement of conductivity performance.

Martin Williams, Haydale Technical Manager and co inventor of the patented plasma process said:

"The development of graphene inks with conductivity better than normal carbon based inks is a major step forward in enabling a myriad of commercial applications of graphenes to take place now. Applications that were previously only thought possible with ‘yet to be developed and commercialised' CVD processes are now immediately accessible with our HDPlas graphene inks."

Haydale's metal free HDPlas™ Graphene Ink Sc213 is specifically formulated for screen-printing applications. It has been optimised for ideal viscosity and solid contents ensuring excellent coverage and exceptional conductivity. The inks are fully customisable and can be modified with development partners for specific requirements including:

Plastic Electronics

Sensors
Flexible Displays

Catalytic Devices
Liquid Crystal Displays

E-Paper
Printed Circuit Boards

OLED Devices
Transparent Electrodes

Thin Film Photovoltaics
Electrochemical Devices

Sample batches from 100gms to 5kg are available now. Technical Data for the SC213 Ink and prices can be found at www.haydale.com/product/hdplastm-gnp-ink/#tab-description


GEM's Technical Director Robin Pittson said:

"Haydale's HDPlas™ graphene nano-materials have proved to be ideally suited for ink formulation. The consistent high quality of the material combined with the range of surface functionalities and the ease of dispersion into the formulated ink base has significantly cut development time. We are very excited to be working with this new material and the Haydale technical staff."

Ray Gibbs, Commercial Director at Haydale added:

"Graphene has been described as a zero billion dollar market, mainly because many of the applications that have been discussed are dependent on production technologies that are yet to be developed commercially. The immediate use of HDPlas™ materials now in place of other future possible Graphene offerings allows many of the key applications to be realised in the near term.

At Haydale we have been working on the ability to commercialise graphene technology for 2 years and today is a significant milestone for us. The key to having commercial products using Graphenes is the ability to homogeneously disperse it into the host material. We are especially pleased that the performance can be achieved with no metal additives. Today, our annual production capability of graphene nano materials is 1 tonne, but is scheduled to increase substantially this year in response to known demand.

The ability to address the conductive ink market now, with a new Graphene product has been achieved through close collaboration with a specialist ink manufacturer. It is exactly that type of association we are seeking across a range of manufacturing sectors where our graphene technology can be applied using our patented technology."

####

About Haydale
Haydale, a wholly owned subsidiary of Innovative Carbon Limited, is a global leader in facilitating the commercial application of graphenes. Haydale’s patented “Split Plasma” technology is a scalable and environmentally friendly method of consistently producing high quality graphene nanoplatelets (GNPs) avoiding the harsh, wet chemical functionalization methods that are more commonly employed.

Because the “Split Plasma” process does not damage material in the way that acid treatments do, Haydale’s graphenes can be tailored to specific customer requirements.

Now housed in a new £1m nano safe production and lab facility, Haydale, combined with a scalable production technology, is facilitating the application of graphenes in fields such as inks, sensors, energy storage, photovoltaics, composites, paints and coatings.

About Gwent Electronic Materials

Gwent Electronic Materials is a worldwide supplier of sophisticated electronic materials such as inks and pastes for electronic and sensor applications. GEM has a production capacity of up to 100,000 Kg of ink paste per year.

All ink pastes are made in the fully computer controlled dispersion equipment which is complemented by an extensive range of testing and analysis equipment to ensure that all products meet the highest quality standards. Gwent hold ISO 13485 which is a medical device qualification and ISO16949 which is an automotive quality standard.
www.gwent.org

About Graphene

Graphene is a form of carbon that exists as a sheet, one atom thick with its atoms arranged into a two-dimensional honeycomb structure. Atom for atom it is at least 100 times stronger than steel; conducts electricity better than copper and has been suggested as a possible replacement for silicon in electronics.

About Graphene Inks

Many of the applications of graphene such as flexible displays or stretchable mobile phones are dependent on the availability of large areas of graphene. While the ability to produce large sheets of graphene and transfer them to a substrate such as glass or polymer large enough to create a TV screen is not currently possible on a commercial scale, inks provide an immediate alternative solution. By dispersing graphene platelets as an ink, large areas of graphene can be screen or ink jet printed as required. The annual revenue for the conductive ink market is estimated at $2.86bn.

Haydale’s HDPlas™ plasma processed graphene, inks and carbon nanotubes are available in a variety of formats.

For more information, please click here

Contacts:
Ray Gibbs
(Haydale Commercial Director)
Tel +44 (0)7836 776128

Trevor Phillips
(Media Relations Officer)
Tel +44 (0)7889 153628

Copyright © Haydale

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Thin films

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Graphene/ Graphite

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

Flexible Electronics

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Scientists create novel 'liquid wire' material inspired by spiders' capture silk: Secret of always-taut spider threads inspires new material May 17th, 2016

Sensors

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Announcements

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Alliances/Trade associations/Partnerships/Distributorships

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Solar/Photovoltaic

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Printing/Lithography/Inkjet/Inks

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Penn engineers develop first transistors made entirely of nanocrystal 'inks April 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic