Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Haydale Announce Breakthrough Graphene Inks Based on HDPlas™ Commercial Technology to Accelerate Graphene Applications

Abstract:
Haydale, a leader in facilitating the commercial application of graphenes announces that with its development partner, Gwent Electronic Materials ("GEM"), it has developed graphene based inks with properties that now quickly enable its customers to use graphene in a wide range of applications. This breakthrough has been possible due to the ability of Haydale to supply quality graphenes in commercial quantities at a viable price.

Haydale Announce Breakthrough Graphene Inks Based on HDPlas™ Commercial Technology to Accelerate Graphene Applications

London, UK | Posted on June 25th, 2013

These new graphene inks enable the commercialisation in the near future of smart packaging, printed batteries, electrochemical sensors, flexible displays and potentially touch screens. The inks are launched today at the Graphene Commercialisation & Applications Summit in London.

Haydale's Graphene based inks were first announced at the Printed Electronics USA conference in December 2012, since then Haydale has been working in close collaboration with specialist ink manufacturer GEM. This has resulted in the rapid improvement of the ink formulations, and enhancement of conductivity performance.

Martin Williams, Haydale Technical Manager and co inventor of the patented plasma process said:

"The development of graphene inks with conductivity better than normal carbon based inks is a major step forward in enabling a myriad of commercial applications of graphenes to take place now. Applications that were previously only thought possible with ‘yet to be developed and commercialised' CVD processes are now immediately accessible with our HDPlas graphene inks."

Haydale's metal free HDPlas™ Graphene Ink Sc213 is specifically formulated for screen-printing applications. It has been optimised for ideal viscosity and solid contents ensuring excellent coverage and exceptional conductivity. The inks are fully customisable and can be modified with development partners for specific requirements including:

Plastic Electronics

Sensors
Flexible Displays

Catalytic Devices
Liquid Crystal Displays

E-Paper
Printed Circuit Boards

OLED Devices
Transparent Electrodes

Thin Film Photovoltaics
Electrochemical Devices

Sample batches from 100gms to 5kg are available now. Technical Data for the SC213 Ink and prices can be found at www.haydale.com/product/hdplastm-gnp-ink/#tab-description


GEM's Technical Director Robin Pittson said:

"Haydale's HDPlas™ graphene nano-materials have proved to be ideally suited for ink formulation. The consistent high quality of the material combined with the range of surface functionalities and the ease of dispersion into the formulated ink base has significantly cut development time. We are very excited to be working with this new material and the Haydale technical staff."

Ray Gibbs, Commercial Director at Haydale added:

"Graphene has been described as a zero billion dollar market, mainly because many of the applications that have been discussed are dependent on production technologies that are yet to be developed commercially. The immediate use of HDPlas™ materials now in place of other future possible Graphene offerings allows many of the key applications to be realised in the near term.

At Haydale we have been working on the ability to commercialise graphene technology for 2 years and today is a significant milestone for us. The key to having commercial products using Graphenes is the ability to homogeneously disperse it into the host material. We are especially pleased that the performance can be achieved with no metal additives. Today, our annual production capability of graphene nano materials is 1 tonne, but is scheduled to increase substantially this year in response to known demand.

The ability to address the conductive ink market now, with a new Graphene product has been achieved through close collaboration with a specialist ink manufacturer. It is exactly that type of association we are seeking across a range of manufacturing sectors where our graphene technology can be applied using our patented technology."

####

About Haydale
Haydale, a wholly owned subsidiary of Innovative Carbon Limited, is a global leader in facilitating the commercial application of graphenes. Haydale’s patented “Split Plasma” technology is a scalable and environmentally friendly method of consistently producing high quality graphene nanoplatelets (GNPs) avoiding the harsh, wet chemical functionalization methods that are more commonly employed.

Because the “Split Plasma” process does not damage material in the way that acid treatments do, Haydale’s graphenes can be tailored to specific customer requirements.

Now housed in a new £1m nano safe production and lab facility, Haydale, combined with a scalable production technology, is facilitating the application of graphenes in fields such as inks, sensors, energy storage, photovoltaics, composites, paints and coatings.

About Gwent Electronic Materials

Gwent Electronic Materials is a worldwide supplier of sophisticated electronic materials such as inks and pastes for electronic and sensor applications. GEM has a production capacity of up to 100,000 Kg of ink paste per year.

All ink pastes are made in the fully computer controlled dispersion equipment which is complemented by an extensive range of testing and analysis equipment to ensure that all products meet the highest quality standards. Gwent hold ISO 13485 which is a medical device qualification and ISO16949 which is an automotive quality standard.
www.gwent.org

About Graphene

Graphene is a form of carbon that exists as a sheet, one atom thick with its atoms arranged into a two-dimensional honeycomb structure. Atom for atom it is at least 100 times stronger than steel; conducts electricity better than copper and has been suggested as a possible replacement for silicon in electronics.

About Graphene Inks

Many of the applications of graphene such as flexible displays or stretchable mobile phones are dependent on the availability of large areas of graphene. While the ability to produce large sheets of graphene and transfer them to a substrate such as glass or polymer large enough to create a TV screen is not currently possible on a commercial scale, inks provide an immediate alternative solution. By dispersing graphene platelets as an ink, large areas of graphene can be screen or ink jet printed as required. The annual revenue for the conductive ink market is estimated at $2.86bn.

Haydale’s HDPlas™ plasma processed graphene, inks and carbon nanotubes are available in a variety of formats.

For more information, please click here

Contacts:
Ray Gibbs
(Haydale Commercial Director)
Tel +44 (0)7836 776128

Trevor Phillips
(Media Relations Officer)
Tel +44 (0)7889 153628

Copyright © Haydale

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Graphene/ Graphite

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Prototype device for measuring graphene-based electromagnetic radiation created: Russian scientists have created a prototype device for measuring graphene-based electromagnetic radiation November 1st, 2016

Flexible Electronics

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Display technology/LEDs/SS Lighting/OLEDs

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Thin films

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Announcements

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project