Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Haydale Announce Breakthrough Graphene Inks Based on HDPlas™ Commercial Technology to Accelerate Graphene Applications

Abstract:
Haydale, a leader in facilitating the commercial application of graphenes announces that with its development partner, Gwent Electronic Materials ("GEM"), it has developed graphene based inks with properties that now quickly enable its customers to use graphene in a wide range of applications. This breakthrough has been possible due to the ability of Haydale to supply quality graphenes in commercial quantities at a viable price.

Haydale Announce Breakthrough Graphene Inks Based on HDPlas™ Commercial Technology to Accelerate Graphene Applications

London, UK | Posted on June 25th, 2013

These new graphene inks enable the commercialisation in the near future of smart packaging, printed batteries, electrochemical sensors, flexible displays and potentially touch screens. The inks are launched today at the Graphene Commercialisation & Applications Summit in London.

Haydale's Graphene based inks were first announced at the Printed Electronics USA conference in December 2012, since then Haydale has been working in close collaboration with specialist ink manufacturer GEM. This has resulted in the rapid improvement of the ink formulations, and enhancement of conductivity performance.

Martin Williams, Haydale Technical Manager and co inventor of the patented plasma process said:

"The development of graphene inks with conductivity better than normal carbon based inks is a major step forward in enabling a myriad of commercial applications of graphenes to take place now. Applications that were previously only thought possible with ‘yet to be developed and commercialised' CVD processes are now immediately accessible with our HDPlas graphene inks."

Haydale's metal free HDPlas™ Graphene Ink Sc213 is specifically formulated for screen-printing applications. It has been optimised for ideal viscosity and solid contents ensuring excellent coverage and exceptional conductivity. The inks are fully customisable and can be modified with development partners for specific requirements including:

Plastic Electronics

Sensors
Flexible Displays

Catalytic Devices
Liquid Crystal Displays

E-Paper
Printed Circuit Boards

OLED Devices
Transparent Electrodes

Thin Film Photovoltaics
Electrochemical Devices

Sample batches from 100gms to 5kg are available now. Technical Data for the SC213 Ink and prices can be found at www.haydale.com/product/hdplastm-gnp-ink/#tab-description


GEM's Technical Director Robin Pittson said:

"Haydale's HDPlas™ graphene nano-materials have proved to be ideally suited for ink formulation. The consistent high quality of the material combined with the range of surface functionalities and the ease of dispersion into the formulated ink base has significantly cut development time. We are very excited to be working with this new material and the Haydale technical staff."

Ray Gibbs, Commercial Director at Haydale added:

"Graphene has been described as a zero billion dollar market, mainly because many of the applications that have been discussed are dependent on production technologies that are yet to be developed commercially. The immediate use of HDPlas™ materials now in place of other future possible Graphene offerings allows many of the key applications to be realised in the near term.

At Haydale we have been working on the ability to commercialise graphene technology for 2 years and today is a significant milestone for us. The key to having commercial products using Graphenes is the ability to homogeneously disperse it into the host material. We are especially pleased that the performance can be achieved with no metal additives. Today, our annual production capability of graphene nano materials is 1 tonne, but is scheduled to increase substantially this year in response to known demand.

The ability to address the conductive ink market now, with a new Graphene product has been achieved through close collaboration with a specialist ink manufacturer. It is exactly that type of association we are seeking across a range of manufacturing sectors where our graphene technology can be applied using our patented technology."

####

About Haydale
Haydale, a wholly owned subsidiary of Innovative Carbon Limited, is a global leader in facilitating the commercial application of graphenes. Haydale’s patented “Split Plasma” technology is a scalable and environmentally friendly method of consistently producing high quality graphene nanoplatelets (GNPs) avoiding the harsh, wet chemical functionalization methods that are more commonly employed.

Because the “Split Plasma” process does not damage material in the way that acid treatments do, Haydale’s graphenes can be tailored to specific customer requirements.

Now housed in a new £1m nano safe production and lab facility, Haydale, combined with a scalable production technology, is facilitating the application of graphenes in fields such as inks, sensors, energy storage, photovoltaics, composites, paints and coatings.

About Gwent Electronic Materials

Gwent Electronic Materials is a worldwide supplier of sophisticated electronic materials such as inks and pastes for electronic and sensor applications. GEM has a production capacity of up to 100,000 Kg of ink paste per year.

All ink pastes are made in the fully computer controlled dispersion equipment which is complemented by an extensive range of testing and analysis equipment to ensure that all products meet the highest quality standards. Gwent hold ISO 13485 which is a medical device qualification and ISO16949 which is an automotive quality standard.
www.gwent.org

About Graphene

Graphene is a form of carbon that exists as a sheet, one atom thick with its atoms arranged into a two-dimensional honeycomb structure. Atom for atom it is at least 100 times stronger than steel; conducts electricity better than copper and has been suggested as a possible replacement for silicon in electronics.

About Graphene Inks

Many of the applications of graphene such as flexible displays or stretchable mobile phones are dependent on the availability of large areas of graphene. While the ability to produce large sheets of graphene and transfer them to a substrate such as glass or polymer large enough to create a TV screen is not currently possible on a commercial scale, inks provide an immediate alternative solution. By dispersing graphene platelets as an ink, large areas of graphene can be screen or ink jet printed as required. The annual revenue for the conductive ink market is estimated at $2.86bn.

Haydale’s HDPlas™ plasma processed graphene, inks and carbon nanotubes are available in a variety of formats.

For more information, please click here

Contacts:
Ray Gibbs
(Haydale Commercial Director)
Tel +44 (0)7836 776128

Trevor Phillips
(Media Relations Officer)
Tel +44 (0)7889 153628

Copyright © Haydale

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022

Display technology/LEDs/SS Lighting/OLEDs

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022

Thin films

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project