Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Published research shows promise of new device to detect disease with drop of blood

NJIT research professors Reginald Farrow and Alokik Kanwal, his former postdoctoral fellow, and their team have created a carbon nanotube-based device to noninvasively and quickly detect mobile single cells with the potential to maintain a high degree of spatial resolution. This prototype lab-on-a-chip that would someday enable a physician to detect disease or virus from just one drop of liquid, including blood.

Credit: NJIT
NJIT research professors Reginald Farrow and Alokik Kanwal, his former postdoctoral fellow, and their team have created a carbon nanotube-based device to noninvasively and quickly detect mobile single cells with the potential to maintain a high degree of spatial resolution. This prototype lab-on-a-chip that would someday enable a physician to detect disease or virus from just one drop of liquid, including blood.

Credit: NJIT

Abstract:
An NJIT research professor known for his cutting-edge work with carbon nanotubes is overseeing the manufacture of a prototype lab-on-a-chip that would someday enable a physician to detect disease or virus from just one drop of liquid, including blood. "Scalable nano-bioprobes with sub-cellular resolution for cell detection," Biosensors and Bioelectronics, (Elsevier, Vol. 45), which will publish on July 15, 2013 but is available now online, describes how NJIT research professors Reginald Farrow and Alokik Kanwal, his former postdoctoral fellow, and their team have created a carbon nanotube-based device to noninvasively and quickly detect mobile single cells with the potential to maintain a high degree of spatial resolution.

Published research shows promise of new device to detect disease with drop of blood

Newark, NJ | Posted on June 24th, 2013

"Using sensors, we created a device that will allow medical personnel to put a tiny drop of liquid on the active area of the device and measure the cells' electrical properties," said Farrow, the recipient of NJIT's highest research honor, the NJIT Board of Overseers Excellence in Research Prize and Medal. "Although we are not the only people by any means doing this kind of work, what we think is unique is how we measure the electrical properties or patterns of cells and how those properties differ between cell types."

In the article, the NJIT researchers evaluated three different types of cells using three different electrical probes. "It was an exploratory study and we don't want to say that we have a signature," Farrow added. "What we do say here is that these cells differ based on electrical properties. Establishing a signature, however, will take time, although we know that the distribution of electrical charges in a healthy cell changes markedly when it becomes sick."

This research was originally funded by the military as a means to identify biological warfare agents. However, Farrow believes that usage can go much further and potentially detect viruses, bacteria, even cancer. The research may also someday even assess the health of good cells, such as brain neurons. Since 2010, three U.S. patents, "Method of forming nanotube vertical field effect transistor," #7,736,979 (2010); "Nanotube device and method of fabrication" #7,964,143 (2011); "Nanotube device and method of fabrication" #8,257,566 (2012) were awarded for this device. In addition, more patents have been filed.

The device (shown in photo) utilizes standard complementary metal oxide semiconductor (CMOS) technologies for fabrication, allowing it to be easily scalable (down to a few nanometers). Nanotubes are deposited using electrophoresis after fabrication in order to maintain CMOS compatibility.

The devices are spaced by six microns which is the same size or smaller than a single cell. To demonstrate its capability to detect cells, the researchers performed impedance spectroscopy on mobile human embryonic kidney (HEK) cells, neurons from mice, and yeast cells. Measurements were performed with and without cells and with and without nanotubes. Nanotubes were found to be crucial to successfully detect the presence of cells.

Carbon nanotubes are very strong, electrically conductive structures a single nanometer in diameter. That's one-billionth of a meter, or approximately ten hydrogen atoms in a row. Farrow's breakthrough is a controlled method for firmly bonding one of these submicroscopic, crystalline electrical wires to a specific location on a substrate. His method also introduces the option of simultaneously bonding an array of millions of nanotubes and efficiently manufacturing many devices at the same time.

Being able to position single carbon nanotubes that have specific properties opens the door to further significant advances. Other possibilities include an artificial pancreas, three-dimensional electronic circuits and nanoscale fuel cells with unparalleled energy density.

Farrow has published over 60 papers in peer-reviewed journals and proceedings, received 11 patent awards, 4 while at NJIT, and given 14 invited talks. The U.S. Defense Advanced Research Projects Agency, the National Institutes of Health, and the U.S. Army's Armament Research, Development and Engineering Center have all supported his research. Farrow was president and conference chair of the 2012 International Symposium on Electron, Ion, and Photon Beams and Nanofabrication. Farrow received his doctorate from Stevens Institute of Technology.

####

For more information, please click here

Contacts:
Sheryl Weinstein
973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Lab-on-a-chip

Dolomite and Lab on a Chip launch Productizing Science® Competition 2015 October 7th, 2014

New chip promising for tumor-targeting research September 22nd, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanomedicine

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Sensors

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Patents/IP/Tech Transfer/Licensing

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Lomiko Signs Licensing Agreement to Produce and Supply Power Converter Systems to E-Commerce Customers October 29th, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Military

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE