Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Published research shows promise of new device to detect disease with drop of blood

NJIT research professors Reginald Farrow and Alokik Kanwal, his former postdoctoral fellow, and their team have created a carbon nanotube-based device to noninvasively and quickly detect mobile single cells with the potential to maintain a high degree of spatial resolution. This prototype lab-on-a-chip that would someday enable a physician to detect disease or virus from just one drop of liquid, including blood.

Credit: NJIT
NJIT research professors Reginald Farrow and Alokik Kanwal, his former postdoctoral fellow, and their team have created a carbon nanotube-based device to noninvasively and quickly detect mobile single cells with the potential to maintain a high degree of spatial resolution. This prototype lab-on-a-chip that would someday enable a physician to detect disease or virus from just one drop of liquid, including blood.

Credit: NJIT

Abstract:
An NJIT research professor known for his cutting-edge work with carbon nanotubes is overseeing the manufacture of a prototype lab-on-a-chip that would someday enable a physician to detect disease or virus from just one drop of liquid, including blood. "Scalable nano-bioprobes with sub-cellular resolution for cell detection," Biosensors and Bioelectronics, (Elsevier, Vol. 45), which will publish on July 15, 2013 but is available now online, describes how NJIT research professors Reginald Farrow and Alokik Kanwal, his former postdoctoral fellow, and their team have created a carbon nanotube-based device to noninvasively and quickly detect mobile single cells with the potential to maintain a high degree of spatial resolution.

Published research shows promise of new device to detect disease with drop of blood

Newark, NJ | Posted on June 24th, 2013

"Using sensors, we created a device that will allow medical personnel to put a tiny drop of liquid on the active area of the device and measure the cells' electrical properties," said Farrow, the recipient of NJIT's highest research honor, the NJIT Board of Overseers Excellence in Research Prize and Medal. "Although we are not the only people by any means doing this kind of work, what we think is unique is how we measure the electrical properties or patterns of cells and how those properties differ between cell types."

In the article, the NJIT researchers evaluated three different types of cells using three different electrical probes. "It was an exploratory study and we don't want to say that we have a signature," Farrow added. "What we do say here is that these cells differ based on electrical properties. Establishing a signature, however, will take time, although we know that the distribution of electrical charges in a healthy cell changes markedly when it becomes sick."

This research was originally funded by the military as a means to identify biological warfare agents. However, Farrow believes that usage can go much further and potentially detect viruses, bacteria, even cancer. The research may also someday even assess the health of good cells, such as brain neurons. Since 2010, three U.S. patents, "Method of forming nanotube vertical field effect transistor," #7,736,979 (2010); "Nanotube device and method of fabrication" #7,964,143 (2011); "Nanotube device and method of fabrication" #8,257,566 (2012) were awarded for this device. In addition, more patents have been filed.

The device (shown in photo) utilizes standard complementary metal oxide semiconductor (CMOS) technologies for fabrication, allowing it to be easily scalable (down to a few nanometers). Nanotubes are deposited using electrophoresis after fabrication in order to maintain CMOS compatibility.

The devices are spaced by six microns which is the same size or smaller than a single cell. To demonstrate its capability to detect cells, the researchers performed impedance spectroscopy on mobile human embryonic kidney (HEK) cells, neurons from mice, and yeast cells. Measurements were performed with and without cells and with and without nanotubes. Nanotubes were found to be crucial to successfully detect the presence of cells.

Carbon nanotubes are very strong, electrically conductive structures a single nanometer in diameter. That's one-billionth of a meter, or approximately ten hydrogen atoms in a row. Farrow's breakthrough is a controlled method for firmly bonding one of these submicroscopic, crystalline electrical wires to a specific location on a substrate. His method also introduces the option of simultaneously bonding an array of millions of nanotubes and efficiently manufacturing many devices at the same time.

Being able to position single carbon nanotubes that have specific properties opens the door to further significant advances. Other possibilities include an artificial pancreas, three-dimensional electronic circuits and nanoscale fuel cells with unparalleled energy density.

Farrow has published over 60 papers in peer-reviewed journals and proceedings, received 11 patent awards, 4 while at NJIT, and given 14 invited talks. The U.S. Defense Advanced Research Projects Agency, the National Institutes of Health, and the U.S. Army's Armament Research, Development and Engineering Center have all supported his research. Farrow was president and conference chair of the 2012 International Symposium on Electron, Ion, and Photon Beams and Nanofabrication. Farrow received his doctorate from Stevens Institute of Technology.

####

For more information, please click here

Contacts:
Sheryl Weinstein
973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Lab-on-a-chip

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Nanomedicine

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Sensors

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Measuring the nanoworld September 4th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Patents/IP/Tech Transfer/Licensing

Silvaco, Purdue team up to bring scalable atomistic TCAD solutions for next generation semiconductor devices and materials August 24th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

Changing the grocery game: Manufacturing process provides low-cost, sustainable option for food packaging June 26th, 2018

Military

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Neutrophil nanosponges soak up proteins that promote rheumatoid arthritis September 3rd, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project