Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Beyond Silicon: Transistors without Semiconductors

Electrons flash across a series of gold quantum dots on boron nitride nanotubes. Michigan Tech scientists made the quantum-tunneling device, which acts like a transistor at room temperature, without using semiconducting materials. Yoke Khin Yap graphic
Electrons flash across a series of gold quantum dots on boron nitride nanotubes. Michigan Tech scientists made the quantum-tunneling device, which acts like a transistor at room temperature, without using semiconducting materials.

Yoke Khin Yap graphic

Abstract:
For decades, electronic devices have been getting smaller, and smaller, and smaller. It's now possible—even routine—to place millions of transistors on a single silicon chip.

Beyond Silicon: Transistors without Semiconductors

Houghton, MI | Posted on June 24th, 2013

But transistors based on semiconductors can only get so small. "At the rate the current technology is progressing, in 10 or 20 years, they won't be able to get any smaller," said physicist Yoke Khin Yap of Michigan Technological University. "Also, semiconductors have another disadvantage: they waste a lot of energy in the form of heat."

Scientists have experimented with different materials and designs for transistors to address these issues, always using semiconductors like silicon. Back in 2007, Yap wanted to try something different that might open the door to a new age of electronics.

"The idea was to make a transistor using a nanoscale insulator with nanoscale metals on top," he said. "In principle, you could get a piece of plastic and spread a handful of metal powders on top to make the devices, if you do it right. But we were trying to create it in nanoscale, so we chose a nanoscale insulator, boron nitride nanotubes, or BNNTs for the substrate."

Yap's team had figured out how to make virtual carpets of BNNTs,which happen to be insulators and thus highly resistant to electrical charge. Using lasers, the team then placed quantum dots (QDs) of gold as small as three nanometers across on the tops of the BNNTs, forming QDs-BNNTs. BNNTs are the perfect substrates for these quantum dots due to their small, controllable, and uniform diameters, as well as their insulating nature. BNNTs confine the size of the dots that can be deposited.

In collaboration with scientists at Oak Ridge National Laboratory (ORNL), they fired up electrodes on both ends of the QDs-BNNTs at room temperature, and something interesting happened. Electrons jumped very precisely from gold dot to gold dot, a phenomenon known as quantum tunneling.

"Imagine that the nanotubes are a river, with an electrode on each bank. Now imagine some very tiny stepping stones across the river," said Yap. "The electrons hopped between the gold stepping stones. The stones are so small, you can only get one electron on the stone at a time. Every electron is passing the same way, so the device is always stable."

Yap's team had made a transistor without a semiconductor. When sufficient voltage was applied, it switched to a conducting state. When the voltage was low or turned off, it reverted to its natural state as an insulator.

Furthermore, there was no "leakage": no electrons from the gold dots escaped into the insulating BNNTs, thus keeping the tunneling channel cool. In contrast, silicon is subject to leakage, which wastes energy in electronic devices and generates a lot of heat.

Other people have made transistors that exploit quantum tunneling, says Michigan Tech physicist John Jaszczak, who has developed the theoretical framework for Yap's experimental research. However, those tunneling devices have only worked in conditions that would discourage the typical cellphone user.

"They only operate at liquid-helium temperatures," said Jaszczak.

The secret to Yap's gold-and-nanotube device is its submicroscopic size: one micron long and about 20 nanometers wide. "The gold islands have to be on the order of nanometers across to control the electrons at room temperature," Jaszczak said. "If they are too big, too many electrons can flow." In this case, smaller is truly better: "Working with nanotubes and quantum dots gets you to the scale you want for electronic devices."

"Theoretically, these tunneling channels can be miniaturized into virtually zero dimension when the distance between electrodes is reduced to a small fraction of a micron," said Yap.

Yap has filed for a full international patent on the technology.

Their work is described in the article "Room Temperature Tunneling Behavior of Boron Nitride Nanotubes Functionalized with Gold Quantum Dots," published online on June 17 in Advanced Materials. In addition to Yap and Jaszczak, coauthors include research scientist Dongyan Zhang, postdoctoral researchers Chee Huei Lee and Jiesheng Wang, and graduate students Madhusudan A. Savaikar, Boyi Hao, and Douglas Banyai of Michigan Tech; Shengyong Qin, Kendal W. Clark and An-Ping Li of the Center for Nanophase Materials Sciences at ORNL; and Juan-Carlos Idrobo of the Materials Science and Technology Division of ORNL.

The work was funded by the Office of Basic Energy Sciences of the US Department of Energy (Award # DE-FG02-06ER46294, PI:Y.K.Yap) and was conducted in part at ORNL (Projects CNMS2009-213 and CNMS2012-083, PI: Y.K.Yap).

####

About Michigan Technological University
Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

For more information, please click here

Contacts:
Marcia Goodrich

906-487-2343

Copyright © Michigan Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Room Temperature Tunneling Behavior of Boron Nitride Nanotubes Functionalized with Gold Quantum Dots,” published online on June 17 in Advanced Materials.

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Physics

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Laboratories

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Chip Technology

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Quantum Dots/Rods

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Quantum nanoscience

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE