Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two-Dimensional Atomically-Flat Transistors Show Promise for Next Generation Green Electronics

Abstract:
UC Santa Barbara researchers demonstrate first n-type field effect transistors on monolayer tungsten diselenide with record performance

Two-Dimensional Atomically-Flat Transistors Show Promise for Next Generation Green Electronics

Santa Barbara, CA | Posted on June 21st, 2013

Researchers at UC Santa Barbara, in collaboration with University of Notre Dame, have recently demonstrated the highest reported drive current on a transistor made of a monolayer of tungsten diselenide (WSe2), a 2-dimensional atomic crystal categorized as a transition metal dichalcogenide (TMD). The discovery is also the first demonstration of an "n-type" WSe2 field-effect-transistor (FET), showing the tremendous potential of this material for future low-power and high-performance integrated circuits.

Monolayer WSe2 is similar to graphene in that it has a hexagonal atomic structure and derives from its layered bulk form in which adjacent layers are held together by relatively weak Van der Waals forces. However, WSe2 has a key advantage over graphene.

"In addition to its atomically smooth surfaces, it has a considerable band gap of 1.6 eV," explained Kaustav Banerjee, professor of electrical and computer engineering and Director of the Nanoelectronics Research Lab at UCSB. Banerjee's research team also includes UCSB researchers Wei Liu, Jiahao Kang, Deblina Sarkar, Yasin Khatami and Professor Debdeep Jena of Notre Dame. Their study was published in the May 2013 issue of Nano Letters.

"There is growing worldwide interest in these 2D crystals due to the many possibilities they hold for the next generation of integrated electronics, optoelectronics and sensors," commented Professor Pulickel Ajayan, the Anderson Professor of Engineering at Rice University and a world renowned authority on nanomaterials. "This result is very impressive and an outcome of the detailed understanding of the physical nature of the contacts to these 2D crystals that the Santa Barbara group has developed."

"Understanding the nature of the metal-TMD interfaces was key to our successful transistor design and demonstration," explained Banerjee. Banerjee's group pioneered a methodology using ab-initio Density Functional Theory (DFT) that established the key criteria needed to evaluate such interfaces leading to the best possible contacts to the monolayer TMDs.

The DFT technique was pioneered by UCSB professor emeritus of physics Dr. Walter Kohn, for which he was awarded the Nobel Prize in Chemistry in 1998. "At a recent meeting with Professor Kohn, we discussed how this relatively new class of semiconductors is benefitting from one of his landmark contributions," said Banerjee.

Wei Liu, a post-doctoral researcher in Banerjee's group and co-author of the study, explained, "Guided by the contact evaluation methodology we have developed, our transistors achieved ON currents as high as 210 uA/um, which are the highest reported value of drive current on any monolayer TMD based FET to date." They were also able to achieve mobility of 142 cm2/V.s, which is the highest reported value for any back-gated monolayer TMD FET.

"DFT simulations provide critical insights to the various factors that effectively determine the quality of the interfaces to these 2D materials, which is necessary for achieving low contact resistances." added Jiahao Kang, a PhD student in Banerjee's group and co-author of the study.

"Nanoelectronics and energy efficient computing technology are key areas of research at UCSB, fields in which our faculty members are renowned for their achievements. With these results, Professor Banerjee's team continues to make important research contributions to next-generation electronics," commented Rod Alferness, Dean of the College of Engineering at UCSB.

Their research was supported by the National Science Foundation, the California NanoSystems Institute at UC Santa Barbara, and the Materials Research Laboratory at UCSB: an NSF MRSEC.

####

About UC Santa Barbara Engineering
The College of Engineering at University of California, Santa Barbara is recognized globally as a leader among the top tier of engineering education and research programs, and is renowned for a successful interdisciplinary approach to engineering research.

For more information, please click here

Copyright © UC Santa Barbara Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project