Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Beating the Diffraction Limit by 1000X – An introduction to nanoscale IR imaging on Bruker AFMs with applications in graphene

Abstract:
Atomic Force Microscopy is a versatile method enabling nanoscale mapping of a material's 3D surface, mechanical properties or even electrical conductivity. In addition to these already powerful imaging modes, AFM researchers continue to actively develop more capabilities which add additional layers of information.

Beating the Diffraction Limit by 1000X – An introduction to nanoscale IR imaging on Bruker AFMs with applications in graphene

Santa Barbara, CA | Posted on June 19th, 2013

In this webinar we provide an introduction to a particularly powerful capability recently implemented by researchers on our AFMs: the ability to perform nanoscale IR imaging of materials using a technique called scattering Scanning Nearfield Optical Microscopy (sSNOM). The XY resolution of sSNOM IR images surpasses 10nm beating the diffraction limit of conventional IR microscopes by as much as 1000X. We will go over the basic physics behind this and show how this technique can be used in much the same way as conventional IR microscopy to identify materials by their molecular resonances, now at the nanoscale. Additionally, IR sSNOM is capable of making measurements that are impossible with conventional IR due to the highly confined nature of the IR light used to probe the material. The most striking example of IR sSNOM's unique capabilities is the ultrahigh contrast imaging of the thinnest material known to man: Graphene. From the IR sSNOM images one can clearly discern and reproducibly count the number of Graphene layers when using IR frequencies in the universal conductivity regime of Graphene. In the plasmonic regime, we demonstrate that the sharpness of the AFM probe creates spatial frequencies sufficiently high to launch 2D nanoplasmons in the Graphene layers.

DATE & TIME:

June 27, 2013 8AM PDT https://www2.gotomeeting.com/register/176082466

June 27, 2013 7PM PDT https://www2.gotomeeting.com/register/829847954

####

For more information, please click here

Contacts:
Tracy Krainer
Marketing Communications Coordinator
Bruker Nano Surfaces Division

112 Robin Hill Road
Santa Barbara, CA 93117
Phone: +1 805-967-1400 x2227

Copyright © Bruker Nano Surfaces Division

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Tools

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Events/Classes

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project