Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Beating the Diffraction Limit by 1000X – An introduction to nanoscale IR imaging on Bruker AFMs with applications in graphene

Abstract:
Atomic Force Microscopy is a versatile method enabling nanoscale mapping of a material's 3D surface, mechanical properties or even electrical conductivity. In addition to these already powerful imaging modes, AFM researchers continue to actively develop more capabilities which add additional layers of information.

Beating the Diffraction Limit by 1000X – An introduction to nanoscale IR imaging on Bruker AFMs with applications in graphene

Santa Barbara, CA | Posted on June 19th, 2013

In this webinar we provide an introduction to a particularly powerful capability recently implemented by researchers on our AFMs: the ability to perform nanoscale IR imaging of materials using a technique called scattering Scanning Nearfield Optical Microscopy (sSNOM). The XY resolution of sSNOM IR images surpasses 10nm beating the diffraction limit of conventional IR microscopes by as much as 1000X. We will go over the basic physics behind this and show how this technique can be used in much the same way as conventional IR microscopy to identify materials by their molecular resonances, now at the nanoscale. Additionally, IR sSNOM is capable of making measurements that are impossible with conventional IR due to the highly confined nature of the IR light used to probe the material. The most striking example of IR sSNOM's unique capabilities is the ultrahigh contrast imaging of the thinnest material known to man: Graphene. From the IR sSNOM images one can clearly discern and reproducibly count the number of Graphene layers when using IR frequencies in the universal conductivity regime of Graphene. In the plasmonic regime, we demonstrate that the sharpness of the AFM probe creates spatial frequencies sufficiently high to launch 2D nanoplasmons in the Graphene layers.

DATE & TIME:

June 27, 2013 8AM PDT https://www2.gotomeeting.com/register/176082466

June 27, 2013 7PM PDT https://www2.gotomeeting.com/register/829847954

####

For more information, please click here

Contacts:
Tracy Krainer
Marketing Communications Coordinator
Bruker Nano Surfaces Division

112 Robin Hill Road
Santa Barbara, CA 93117
Phone: +1 805-967-1400 x2227

Copyright © Bruker Nano Surfaces Division

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Tools

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Events/Classes

Bruker Introduces BioScope Resolve High-Resolution BioAFM System: Featuring PeakForce Tapping for Quantitative Bio-Mechanical Property Mapping December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

PETA science consortium to present at Society for Risk Analysis meeting December 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE