Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Beating the Diffraction Limit by 1000X – An introduction to nanoscale IR imaging on Bruker AFMs with applications in graphene

Abstract:
Atomic Force Microscopy is a versatile method enabling nanoscale mapping of a material's 3D surface, mechanical properties or even electrical conductivity. In addition to these already powerful imaging modes, AFM researchers continue to actively develop more capabilities which add additional layers of information.

Beating the Diffraction Limit by 1000X – An introduction to nanoscale IR imaging on Bruker AFMs with applications in graphene

Santa Barbara, CA | Posted on June 19th, 2013

In this webinar we provide an introduction to a particularly powerful capability recently implemented by researchers on our AFMs: the ability to perform nanoscale IR imaging of materials using a technique called scattering Scanning Nearfield Optical Microscopy (sSNOM). The XY resolution of sSNOM IR images surpasses 10nm beating the diffraction limit of conventional IR microscopes by as much as 1000X. We will go over the basic physics behind this and show how this technique can be used in much the same way as conventional IR microscopy to identify materials by their molecular resonances, now at the nanoscale. Additionally, IR sSNOM is capable of making measurements that are impossible with conventional IR due to the highly confined nature of the IR light used to probe the material. The most striking example of IR sSNOM's unique capabilities is the ultrahigh contrast imaging of the thinnest material known to man: Graphene. From the IR sSNOM images one can clearly discern and reproducibly count the number of Graphene layers when using IR frequencies in the universal conductivity regime of Graphene. In the plasmonic regime, we demonstrate that the sharpness of the AFM probe creates spatial frequencies sufficiently high to launch 2D nanoplasmons in the Graphene layers.

DATE & TIME:

June 27, 2013 8AM PDT https://www2.gotomeeting.com/register/176082466

June 27, 2013 7PM PDT https://www2.gotomeeting.com/register/829847954

####

For more information, please click here

Contacts:
Tracy Krainer
Marketing Communications Coordinator
Bruker Nano Surfaces Division

112 Robin Hill Road
Santa Barbara, CA 93117
Phone: +1 805-967-1400 x2227

Copyright © Bruker Nano Surfaces Division

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Imaging

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Events/Classes

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Leti Will Demonstrate Fusion of Autonomous Car’s Senses: SIGMA FUSION’s Efficient, Sensor-based System Fits in a Microcontroller Platform, Anticipates Safety Requirements December 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project