Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Which qubit my dear? New method to distinguish between neighbouring quantum bits

This is Professor Michelle Simmons, director of the Australian Centre of Excellence for Quantum Computation and Communication Technology.

Credit: UNSW
This is Professor Michelle Simmons, director of the Australian Centre of Excellence for Quantum Computation and Communication Technology.

Credit: UNSW

Abstract:
Researchers at the University of New South Wales have proposed a new way to distinguish between quantum bits that are placed only a few nanometres apart in a silicon chip, taking them a step closer to the construction of a large-scale quantum computer.

Which qubit my dear? New method to distinguish between neighbouring quantum bits

Sydney, Australia | Posted on June 18th, 2013

Quantum bits, or qubits, are the basic building blocks of quantum computers - ultra-powerful devices that will offer enormous advantages for solving complex problems.

Professor Michelle Simmons, leader of the research team, said a qubit based on the spin of an individual electron bound to a phosphorus atom within a silicon chip is one of the most promising systems for building a practical quantum computer, due to silicon's widespread use in the microelectronics industry.

"However, to be able to couple electron-spins on single atom qubits, the qubits need to be placed with atomic precision, within just a few tens of nanometres of each other," she says.

"This poses a technical problem in how to make them, and an operational problem in how to control them independently when they are so close together."

The UNSW team, in collaboration with theorists at Sandia National Laboratories in New Mexico, has found a solution to both these problems. Their study is published in the journal Nature Communications.

In a significant feat of atomic engineering, they were able to read-out the spins of individual electrons on a cluster of phosphorus atoms that had been placed precisely in silicon. They also propose a new method for distinguishing between neighbouring qubits that are only a few nanometres apart.

"It is a daunting challenge to rotate the spin of each qubit individually," says Holger Büch, lead author of the new study.




"If each electron spin-qubit is hosted by a single phosphorus atom, every time you try to rotate one qubit, all the neighbouring qubits will rotate at the same time - and quantum computation will not work. "

"But if each electron is hosted by a different number of phosphorus atoms, then the qubits will respond to different electromagnetic fields - and each qubit can be distinguished from the others around it," he says.

The UNSW team is part of the Australian Centre of Excellence for Quantum Computation and Communication Technology, a world-leading research centre headquartered in Sydney, Australia.

"This is an elegant and satisfying piece of work," says Professor Simmons, centre director and Mr Büch's PhD supervisor. "This first demonstration that we can maintain long spin lifetimes of electrons on multi-donor systems is very powerful. It offers a new method for addressing individual qubits, putting us one step closer to realising a practical, large-scale quantum computer."

To make the tiny device, the researchers deposited a layer of hydrogen on a silicon wafer and used a scanning tunnelling microscope to create a pattern on the surface in an ultra-high vacuum.

This was then exposed to phosphine gas and annealed at 350 degrees so phosphorus atoms became incorporated precisely into the silicon. The device was then buried in another layer of silicon.

In a quantum computer information is stored in the spin, or magnetic orientation, of an electron. This spin can not only be in two states - up and down - just as in a classical computer.

It can also be in a combination of both states at the same time, allowing exponentially larger amounts of information to be stored and processed in parallel.

####

For more information, please click here

Contacts:
Professor Michelle Simmons:

+ 61 (2) 9385 6313

UNSW Science media:
Deborah Smith

61-293-857-307

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Physics

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Imaging

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

Spintronics

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors June 21st, 2016

Spintronics: Resetting the future of heat assisted magnetic recording June 15th, 2016

Spintronics development gets boost with new findings into ferromagnetism in Mn-doped GaAs June 7th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Chip Technology

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Quantum Computing

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors June 21st, 2016

Researchers refine method for detecting quantum entanglement June 18th, 2016

UChicago physicists first to see behavior of quantum materials in curved space: Feat probes light-matter interplay, phenomena of potential technological interest June 16th, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Tools

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic