Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Polymer-coated catalyst protects "artificial leaf"

This complex solar cell is coated with two different catalysts and works like an "artificial leaf", using sunlight to split water and yield hydrogen gas.
This complex solar cell is coated with two different catalysts and works like an "artificial leaf", using sunlight to split water and yield hydrogen gas.

Abstract:
Due to the fluctuating availability of solar energy, storage solutions are urgently needed. One option is to use the electrical energy generated inside solar cells to split water by means of electrolysis, in the process yielding hydrogen that can be used for a storable fuel. Researchers at the HZB Institute for Solar Fuels have modified so called superstrate solar cells with their highly efficient architecture in order to obtain hydrogen from water with the help of suitable catalysts. This type of cell works something like an "artificial leaf." But the solar cell rapidly corrodes when placed in the aqueous electrolyte solution. Now, Ph.D. student Diana Stellmach has found a way to prevent corrosion by embedding the catalysts in an electrically conducting polymer and then mounting them onto the solar cell's two contact surfaces, making her the first scientist in all of Europe to have come up with this solution. As a result, the cell's sensitive contacts are sealed to prevent corrosion with a stable yield of approx. 3.7 percent sunlight.

Polymer-coated catalyst protects "artificial leaf"

Berlin, Germany | Posted on June 17th, 2013

Hydrogen stores chemical energy and is highly versatile in terms of its applicability potential. The gas can be converted into fuels like methane as well as methanol or it can generate electricity directly inside fuel cells. Hydrogen can be produced through the electrolytic splitting of water molecules into hydrogen and oxygen by using two electrodes that are coated with suitable catalysts and between which a minimum 1.23 volt tension is generated. The production of hydrogen only becomes interesting if solar energy can be used to produce it. Because that would solve two problems at once: On sunny days, excess electricity could yield hydrogen, which would be available for fuel or to generate electricity at a later point like at night or on days that are overcast.

New approach with complex thin film technologies

At the Helmholtz Centre Berlin for Materials and Energy (HZB) Institute for Solar Fuels, researchers are working on new approaches to realizing this goal. They are using photovoltaic structures made of multiple ultrathin layers of silicon that are custom-made by the Photovoltaic Competence Centre Berlin (PVcomB), another of the HZB's institutes. Since the cell consists of a single - albeit complex - "block," this is known as a monolithic approach. At the Institute for Solar Fuels, the cell's electrical contact surfaces are coated with special catalysts for splitting water. If this cell is placed in dilute sulphuric acid and irradiated with sun-like light, a tension is produced at the contacts that can be used to split water. During this process, it is the catalysts, which speed up the reactions at the contacts, that are critically important.

Protection against corrosion

The PVcomB photovoltaic cells' main advantage is their "superstrate architecture": Light enters through the transparent front contact, which is deposited on the carrier glass; there is no opacity due to catalysts being mounted onto the cells, because they are located on the cell's back side and are in contact with the water/acid mixture. This mixture is aggressive, that is to say, it is corrosive, so much so that Diana Stellmach had to first replace the usual zinc oxide silver back contact with a titanium coat approximately 400 nanometers thick. In a second step, she developed a solution to simultaneously protect the cell against corrosion with the mounting of the catalyst: She mixed nanoparticles of RuO2 with a conducting polymer (PEDOT:PSS) and applied this mixture to the cell's back side contact to act as a catalyst for the production of oxygen. Similarly, platinum nanoparticles, the sites of hydrogen production, were applied to the front contact.

Stable H2-Production

In all, the configuration achieved a degree of efficacy of 3.7 percent and was stable over a minimum 18 hours. "This way, Ms. Stellmach is the first ever scientist anywhere in Europe to have realized this kind of water-splitting solar cell structure," explains Prof. Dr. Sebastian Fiechter. And just maybe anywhere in the World, as photovoltaic membranes with different architectures have proved far less stable.

Yet the fact remains that catalysts like platinum and RuO2 are rather expensive and will ultimately have to give way to less costly types of materials. Diana Stellmach is already working on that as well; she is currently in the process of developing carbon nanorods that are coated with layers of molybdenum sulphide and which serve as catalysts for hydrogen production.

####

For more information, please click here

Contacts:
Sebastian Fiechter

49-308-062-42927

Copyright © Helmholtz Association of German Research Centres

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Watch the "artificial leaf" in action:

Related News Press

News and information

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Videos/Movies

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Discoveries

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Announcements

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Solar/Photovoltaic

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project