Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Efficient and inexpensive: Researchers develop catalyst material for fuel cells: Platinum-nickel nano-octahedra save 90 percent platinum

Electron micrograph and atomistic model (bottom right) of a highly oxygen-activating platinum-nickel catalyst particle. Its diameter is approximately ten thousand times smaller than the diameter of a human hair. Red spheres represent platinum atoms and green spheres represent nickel atoms. One of the properties of such octahedra is that most surface atoms have the same geometric arrangement. The micrograph was taken at the PICO microscope.

Credit: Source: Forschungszentrum Jülich/TU Berlin
Electron micrograph and atomistic model (bottom right) of a highly oxygen-activating platinum-nickel catalyst particle. Its diameter is approximately ten thousand times smaller than the diameter of a human hair. Red spheres represent platinum atoms and green spheres represent nickel atoms. One of the properties of such octahedra is that most surface atoms have the same geometric arrangement. The micrograph was taken at the PICO microscope.

Credit: Source: Forschungszentrum Jülich/TU Berlin

Abstract:
Efficient, robust and economic catalyst materials hold the key to achieving a breakthrough in fuel cell technology. Scientists from Jülich and Berlin have developed a material for converting hydrogen and oxygen to water using a tenth of the typical amount of platinum that was previously required. With the aid of state-of-the-art electron microscopy, the researchers discovered that the function of the nanometre-scale catalyst particles is decisively determined by their geometric shape and atomic structure. This discovery opens up new paths for further improving catalysts for energy conversion and storage. The results have been published in the current issue of the respected journal Nature Materials (DOI: 10.1038/nmat3668).

Efficient and inexpensive: Researchers develop catalyst material for fuel cells: Platinum-nickel nano-octahedra save 90 percent platinum

Jülich, Germany | Posted on June 17th, 2013

Hydrogen-powered fuel cells are regarded as a clean alternative to conventional combustion engines, as, aside from electric energy, the only substance produced during operation is water. At present, the implementation of hydrogen fuel cells is being hindered by the high material costs of platinum. Large quantities of the expensive noble metal are still required for the electrodes in the fuel cells at which the chemical conversion processes take place. Without the catalytic effect of the platinum, it is not currently possible to achieve the necessary conversion rates.

As catalysis takes place at the surface of the platinum only, material can be saved and, simultaneously, the efficiency of the electrodes improved by using platinum nanoparticles, thus increasing the ratio of platinum surface to material required. Although the tiny particles are around ten thousand times smaller than the diameter of a human hair, the surface area of a kilogram of such particles is equivalent to that of several football fields.

Still more platinum can be saved by mixing it with other, less valuable metals, such as nickel or copper. Scientists from Forschungszentrum Jülich and Technische Universität Berlin have succeeded in developing efficient metallic catalyst particles for converting hydrogen and oxygen to water using only a tenth of the typical amount of platinum that was previously required.

The new catalyst consists not of the round nanoparticles that were previously in widespread use, but of octrahedral-shaped nanoparticles of a platinum-nickel alloy. The researchers discovered that the unique manner in which the platinum and nickel atoms arrange themselves on the surfaces of these particles serves to optimally accelerate the chemical reaction between hydrogen and oxygen to form water. Round or cubic particles, on the other hand, have different atomic arrangements at the surface and are therefore less effective catalysts for the chemical reaction, something which would have to be compensated by using increased amounts of noble metal.

The way in which the life-cycle of the catalysts depends on and can be optimized by their atomic composition was the subject of the research team's investigation, which made use of ultrahigh-resolution electron microscopy at the Ernst Ruska-Centre (ER-C), a facility of the Jülich Aachen Research Alliance. "A decisive factor for understanding the life-cycle of the catalysts was the observation that nickel and platinum atoms prefer not to be evenly distributed at the surface of the nano-octahedra," explains Dr. Marc Heggen from ER-C and the Peter Grünberg Institute at Forschungszentrum Jülich. "Although this is advantageous for reactivity, it limits lifetime."

To identify the location of each element with atomic precision, the researchers used a method in which the electron beam of one of the world's leading ultrahigh-resolution electron microscopes is finely focused, sent through the specimen and, by interactions with the specimen, loses part of its energy. Each element in the specimen can thus be identified like a fingerprint. Conventional electron microscopes are not capable of detecting such chemical signatures with atomic resolution.

"This pioneering experimental work provides direct evidence for the fact that the choice of the correct geometric shape for the catalyst particles is as important for optimizing their function as the choice of their composition and size," says Prof. Peter Strasser from Technische Universität Berlin. "This provides researchers with new possibilities for further improving functional materials, especially catalysts, for energy storage." The latest experiments from Strasser's research group indicate that substantial increases in efficiency may also be possible for the reaction splitting water to produce oxygen in electrolysers, for which the even more expensive noble metal iridium is used.

###

Original publication:

Compositional segregation in shaped Pt alloy nanoparticles and their structural behavior during electrocatalysis
C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser
Nature Materials, published online: 16 June 2013; DOI: 10.1038/nmat3668

####

About Jülich, Germany
Forschungszentrum Jülich… ... pursues cutting-edge interdisciplinary research addressing pressing issues facing society today, above all the energy supply of the future. With its competence in materials science and simulation and its expertise in physics, nanotechnology and information technology, as well as in the biosciences and brain research, Jülich is developing the basis for the key technologies of tomorrow. Forschungszentrum Jülich helps to solve the grand challenges facing society in the fields of energy and the environment, health, and information technology. With almost 5000 employees, Jülich – a member of the Helmholtz Association – is one of the large interdisciplinary research centres in Europe.

For more information, please click here

Contacts:
Dr. Marc Heggen
Forschungszentrum Jülich
Microstructure Research (PGI-5)
tel: +49 2461 61-9479


Prof. Dr. Peter Strasser
Technische Universität Berlin
Department of Chemistry
tel: +49 30 314-29542


Press contact:
Angela Wenzik
science journalist
Forschungszentrum Jülich
tel: +49 2461 61-6048

Copyright © Jülich, Germany

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Peter Grünberg Institute, Microstructure Research (PGI-5):

TU Berlin, Department of Chemistry:

High-performance microscopy at ER-C – how the PICO works:

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Imaging

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Laboratories

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Tools

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Measure Both Elastic and Viscous Properties with AFM Using Asylum Research’s Exclusive AM-FM Viscoelastic Mapping Mode August 28th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

Energy

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Automotive/Transportation

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE