Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Efficient and inexpensive: Researchers develop catalyst material for fuel cells: Platinum-nickel nano-octahedra save 90 percent platinum

Electron micrograph and atomistic model (bottom right) of a highly oxygen-activating platinum-nickel catalyst particle. Its diameter is approximately ten thousand times smaller than the diameter of a human hair. Red spheres represent platinum atoms and green spheres represent nickel atoms. One of the properties of such octahedra is that most surface atoms have the same geometric arrangement. The micrograph was taken at the PICO microscope.

Credit: Source: Forschungszentrum Jülich/TU Berlin
Electron micrograph and atomistic model (bottom right) of a highly oxygen-activating platinum-nickel catalyst particle. Its diameter is approximately ten thousand times smaller than the diameter of a human hair. Red spheres represent platinum atoms and green spheres represent nickel atoms. One of the properties of such octahedra is that most surface atoms have the same geometric arrangement. The micrograph was taken at the PICO microscope.

Credit: Source: Forschungszentrum Jülich/TU Berlin

Abstract:
Efficient, robust and economic catalyst materials hold the key to achieving a breakthrough in fuel cell technology. Scientists from Jülich and Berlin have developed a material for converting hydrogen and oxygen to water using a tenth of the typical amount of platinum that was previously required. With the aid of state-of-the-art electron microscopy, the researchers discovered that the function of the nanometre-scale catalyst particles is decisively determined by their geometric shape and atomic structure. This discovery opens up new paths for further improving catalysts for energy conversion and storage. The results have been published in the current issue of the respected journal Nature Materials (DOI: 10.1038/nmat3668).

Efficient and inexpensive: Researchers develop catalyst material for fuel cells: Platinum-nickel nano-octahedra save 90 percent platinum

Jülich, Germany | Posted on June 17th, 2013

Hydrogen-powered fuel cells are regarded as a clean alternative to conventional combustion engines, as, aside from electric energy, the only substance produced during operation is water. At present, the implementation of hydrogen fuel cells is being hindered by the high material costs of platinum. Large quantities of the expensive noble metal are still required for the electrodes in the fuel cells at which the chemical conversion processes take place. Without the catalytic effect of the platinum, it is not currently possible to achieve the necessary conversion rates.

As catalysis takes place at the surface of the platinum only, material can be saved and, simultaneously, the efficiency of the electrodes improved by using platinum nanoparticles, thus increasing the ratio of platinum surface to material required. Although the tiny particles are around ten thousand times smaller than the diameter of a human hair, the surface area of a kilogram of such particles is equivalent to that of several football fields.

Still more platinum can be saved by mixing it with other, less valuable metals, such as nickel or copper. Scientists from Forschungszentrum Jülich and Technische Universität Berlin have succeeded in developing efficient metallic catalyst particles for converting hydrogen and oxygen to water using only a tenth of the typical amount of platinum that was previously required.

The new catalyst consists not of the round nanoparticles that were previously in widespread use, but of octrahedral-shaped nanoparticles of a platinum-nickel alloy. The researchers discovered that the unique manner in which the platinum and nickel atoms arrange themselves on the surfaces of these particles serves to optimally accelerate the chemical reaction between hydrogen and oxygen to form water. Round or cubic particles, on the other hand, have different atomic arrangements at the surface and are therefore less effective catalysts for the chemical reaction, something which would have to be compensated by using increased amounts of noble metal.

The way in which the life-cycle of the catalysts depends on and can be optimized by their atomic composition was the subject of the research team's investigation, which made use of ultrahigh-resolution electron microscopy at the Ernst Ruska-Centre (ER-C), a facility of the Jülich Aachen Research Alliance. "A decisive factor for understanding the life-cycle of the catalysts was the observation that nickel and platinum atoms prefer not to be evenly distributed at the surface of the nano-octahedra," explains Dr. Marc Heggen from ER-C and the Peter Grünberg Institute at Forschungszentrum Jülich. "Although this is advantageous for reactivity, it limits lifetime."

To identify the location of each element with atomic precision, the researchers used a method in which the electron beam of one of the world's leading ultrahigh-resolution electron microscopes is finely focused, sent through the specimen and, by interactions with the specimen, loses part of its energy. Each element in the specimen can thus be identified like a fingerprint. Conventional electron microscopes are not capable of detecting such chemical signatures with atomic resolution.

"This pioneering experimental work provides direct evidence for the fact that the choice of the correct geometric shape for the catalyst particles is as important for optimizing their function as the choice of their composition and size," says Prof. Peter Strasser from Technische Universität Berlin. "This provides researchers with new possibilities for further improving functional materials, especially catalysts, for energy storage." The latest experiments from Strasser's research group indicate that substantial increases in efficiency may also be possible for the reaction splitting water to produce oxygen in electrolysers, for which the even more expensive noble metal iridium is used.

###

Original publication:

Compositional segregation in shaped Pt alloy nanoparticles and their structural behavior during electrocatalysis
C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser
Nature Materials, published online: 16 June 2013; DOI: 10.1038/nmat3668

####

About Jülich, Germany
Forschungszentrum Jülich… ... pursues cutting-edge interdisciplinary research addressing pressing issues facing society today, above all the energy supply of the future. With its competence in materials science and simulation and its expertise in physics, nanotechnology and information technology, as well as in the biosciences and brain research, Jülich is developing the basis for the key technologies of tomorrow. Forschungszentrum Jülich helps to solve the grand challenges facing society in the fields of energy and the environment, health, and information technology. With almost 5000 employees, Jülich – a member of the Helmholtz Association – is one of the large interdisciplinary research centres in Europe.

For more information, please click here

Contacts:
Dr. Marc Heggen
Forschungszentrum Jülich
Microstructure Research (PGI-5)
tel: +49 2461 61-9479


Prof. Dr. Peter Strasser
Technische Universität Berlin
Department of Chemistry
tel: +49 30 314-29542


Press contact:
Angela Wenzik
science journalist
Forschungszentrum Jülich
tel: +49 2461 61-6048

Copyright © Jülich, Germany

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Peter Grünberg Institute, Microstructure Research (PGI-5):

TU Berlin, Department of Chemistry:

High-performance microscopy at ER-C – how the PICO works:

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Imaging

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Pittcon News: Renishaw adds to the comprehensive imaging options available with its inVia confocal Raman microscope January 27th, 2015

Laboratories

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

New pathway to valleytronics January 27th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Tools

Hiden Gas Analysers at PITTCON 2015 | Visit us on Booth No. 1127 January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Energy

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Automotive/Transportation

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Materials - Efficient catalysts... January 13th, 2015

Waterloo chemist one step closer to a new generation of electric car battery January 12th, 2015

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

Fuel Cells

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE