Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian Scientists Produce Dynamometer for Nanoparticles, Biocells

Abstract:
Iranian researchers from the Institute for Advances Studies in Basic Sciences in Zanjan studied the axial potential of optical tweezers and succeeded in using this device for dynamometric purposes in experiments such as DNA tension and studying the mechanical properties of biocells.

Iranian Scientists Produce Dynamometer for Nanoparticles, Biocells

Tehran, Iran | Posted on June 15th, 2013

The use of optical tweezers in order to measure the force in objects at nanometirc scale can be an interesting idea for the researchers in all fields, including biosciences. The use of the optical tweezers requires a comprehensive and exact understanding of its potential.

The main objective of this project is to study and identify the axial potential of optical tweezers and to use it in dynamometric experiments such as DNA tension and evaluation of chemical properties of biocells.

Among the applications of this device, mention can be made of dynamometry in experiments with fluid environment at micro or nanometric scales and studying the mechanical properties of biocells.

Dynamometric experiments such as DNA tension, RNA, and other biopolymers are much easier in axial direction. In this experiment, there is no need for the use of micropipette and its challenges or the use of two-edged trap. The polymer can be stuck from one end to the sample vessel and it can be pulled from the other end towards axial direction. This arrangement is much easier and more optimized, and it is the only solution in some cases.

Results of the research have been published in Optics Letters, vol. 38, issue 5, 2013. For more information about the details of the research, study the full paper on pages 685-687 on the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Nanomedicine

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Discoveries

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Announcements

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project