Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-thermometer enables first atomic-scale heat transfer measurements

Abstract:
In findings that could help overcome a major technological hurdle in the road toward smaller and more powerful electronics, an international research team involving University of Michigan engineering researchers, has shown the unique ways in which heat dissipates at the tiniest scales.

Nano-thermometer enables first atomic-scale heat transfer measurements

Ann Arbor, MI | Posted on June 13th, 2013

A paper on the research is published in the June 13 edition of Nature.

When a current passes through a material that conducts electricity, it generates heat. Understanding where the temperature will rise in an electronic system helps engineers design reliable, high-performing computers, cell phones and medical devices, for example. While heat generation in larger circuits is well understood, classical physics can't describe the relationship between heat and electricity at the ultimate end of the nanoscale—where devices are approximately one nanometer in size and consist of just a few atoms.

Within the next two decades, computer science and engineering researchers are expected to be working at this "atomic" scale, according to Pramod Reddy, U-M assistant professor of mechanical engineering and materials science and engineering who led the research.

"At 20 or 30 nanometers in size, the active regions of today's transistors have very small dimensions," Reddy said. "However, if industry keeps pace with Moore's law and continues shrinking the size of transistors to double their density on a circuit then atomic-scales are not far off.

"The most important thing then, is to understand the relationship between the heat dissipated and the electronic structure of the device, in the absence of which you can't really leverage the atomic scale. This work gives insights into that for the first time."

The researchers have shown experimentally how an atomic-scale system heats up, and how this differs from the process at the macroscale. They also devised a framework to explain the process.

In the tangible, macroscale world, when electricity travels through a wire, the whole wire heats up, as do all the electrodes along it. In contrast, when the "wire" is a nanometer-sized molecule and only connecting two electrodes, the temperature raises predominantly in one of them.

"In an atomic scale device, all the heating is concentrated in one place and less so in other places," Reddy said.

In order to accomplish this, researchers in Reddy's lab—doctoral students Woochul Lee and Wonho Jeong and post-doctoral fellow Kyeongtae Kim—developed techniques to create stable atomic-scale devices and designed and built a custom nanoscale thermometer integrated into a cone-shaped device. Single molecules or atoms were trapped between the cone-shaped device and a thin plate of gold to study heat dissipation in prototypical molecular-scale circuits.

"The results from this work also firmly establish the validity of a heat-dissipation theory that was originally proposed by Rolf Landauer, a physicist from IBM," Reddy said. "Further, the insights obtained from this work also enable a deeper understanding of the relationship between heat dissipation and atomic-scale thermoelectric phenomena, which is the conversion of heat into electricity."

###

Researchers from the Universidad Autónoma de Madrid in Spain and the University of Konstanz in Germany also contributed to the work.

The paper is titled "Heat dissipation in atomic-scale junctions." The research at U-M was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, National Science Foundation and Center for Solar and Thermal Energy conversion, an Energy Frontier Research Center funded by the U.S Department of Energy, Office of Science, Basic Energy Sciences.

####

For more information, please click here

Contacts:
Nicole Casal Moore

734-647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Pramod Reddy:

Related News Press

News and information

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Chip Technology

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Discoveries

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Announcements

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project