Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-thermometer enables first atomic-scale heat transfer measurements

Abstract:
In findings that could help overcome a major technological hurdle in the road toward smaller and more powerful electronics, an international research team involving University of Michigan engineering researchers, has shown the unique ways in which heat dissipates at the tiniest scales.

Nano-thermometer enables first atomic-scale heat transfer measurements

Ann Arbor, MI | Posted on June 13th, 2013

A paper on the research is published in the June 13 edition of Nature.

When a current passes through a material that conducts electricity, it generates heat. Understanding where the temperature will rise in an electronic system helps engineers design reliable, high-performing computers, cell phones and medical devices, for example. While heat generation in larger circuits is well understood, classical physics can't describe the relationship between heat and electricity at the ultimate end of the nanoscale—where devices are approximately one nanometer in size and consist of just a few atoms.

Within the next two decades, computer science and engineering researchers are expected to be working at this "atomic" scale, according to Pramod Reddy, U-M assistant professor of mechanical engineering and materials science and engineering who led the research.

"At 20 or 30 nanometers in size, the active regions of today's transistors have very small dimensions," Reddy said. "However, if industry keeps pace with Moore's law and continues shrinking the size of transistors to double their density on a circuit then atomic-scales are not far off.

"The most important thing then, is to understand the relationship between the heat dissipated and the electronic structure of the device, in the absence of which you can't really leverage the atomic scale. This work gives insights into that for the first time."

The researchers have shown experimentally how an atomic-scale system heats up, and how this differs from the process at the macroscale. They also devised a framework to explain the process.

In the tangible, macroscale world, when electricity travels through a wire, the whole wire heats up, as do all the electrodes along it. In contrast, when the "wire" is a nanometer-sized molecule and only connecting two electrodes, the temperature raises predominantly in one of them.

"In an atomic scale device, all the heating is concentrated in one place and less so in other places," Reddy said.

In order to accomplish this, researchers in Reddy's lab—doctoral students Woochul Lee and Wonho Jeong and post-doctoral fellow Kyeongtae Kim—developed techniques to create stable atomic-scale devices and designed and built a custom nanoscale thermometer integrated into a cone-shaped device. Single molecules or atoms were trapped between the cone-shaped device and a thin plate of gold to study heat dissipation in prototypical molecular-scale circuits.

"The results from this work also firmly establish the validity of a heat-dissipation theory that was originally proposed by Rolf Landauer, a physicist from IBM," Reddy said. "Further, the insights obtained from this work also enable a deeper understanding of the relationship between heat dissipation and atomic-scale thermoelectric phenomena, which is the conversion of heat into electricity."

###

Researchers from the Universidad Autónoma de Madrid in Spain and the University of Konstanz in Germany also contributed to the work.

The paper is titled "Heat dissipation in atomic-scale junctions." The research at U-M was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, National Science Foundation and Center for Solar and Thermal Energy conversion, an Energy Frontier Research Center funded by the U.S Department of Energy, Office of Science, Basic Energy Sciences.

####

For more information, please click here

Contacts:
Nicole Casal Moore

734-647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Pramod Reddy:

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Energy

Nanoparticle technology triples the production of biogas October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Research partnerships

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE