Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > An ultrasensitive molybdenum-based image sensor: New material can result in 5 times more sensitive cameras

This prototype is the first ever molybdenum based image sensor, 5 times more sensitive than current silicium-based technology

Credit: EPFL / Alain Herzog
This prototype is the first ever molybdenum based image sensor, 5 times more sensitive than current silicium-based technology

Credit: EPFL / Alain Herzog

Abstract:
A new material has the potential to improve the sensitivity of photographic image sensors by a factor of five. In 2011, an EPFL team led by Andras Kis discovered the amazing semi-conducting properties of molybdenite (MoS2), and they have been exploring its potential in various technological applications ever since. This promising candidate for replacing silicon has now been integrated in a prototype of an image sensor. This sensor, described in an article appearing in Nature Nanotechnology, has five times the light sensitivity of current technology.

An ultrasensitive molybdenum-based image sensor: New material can result in 5 times more sensitive cameras

Lausanne, Switzerland | Posted on June 12th, 2013

All digital cameras work according to the same principle: they convert light into an electric charge. The camera has a light sensor, whose surface is a semi-conducting material that is divided into millions of cells, or pixels. The semi-conducting material on each cell reacts to the incoming light by generating a specific electrical charge, which is then transferred to the camera's firmware for processing. The efficiency of this process depends on the quantity of light that is needed to trigger the charge transfer.

The all-time pixel record

The objective of the EPFL researchers was to demonstrate molybdenite's potential in image sensors. For this reason, their sensor only has a single pixel. But it needs five times less light to trigger a charge transfer than the silicon-based sensors that are currently available. "Our main goal is to prove that MoS2 is an ideal candidate for this kind of application," explains Kis.

This level of sensitivity would open up the huge area of low-light or night photography, without resorting to "noise"-generating amplification techniques, slowing down the shutter speed or using a flash. For some specialized domains in which light conditions are often not optimal, such as astrophotography or biological imaging, the advantage is even more obvious. "It would make it possible to take photographs using only starlight," says Kis.

A revolutionary material

Molybdenite's extraordinary properties make this performance possible. Like the silicon used in currently available sensors, molybdenite requires an electric current, which comes from the battery. To generate a pixel, the charge generated by the light energy must be greater than the threshold current from the battery.

A single-atom layer of molybdenite requires only a very small electric charge to function. Because of this, it takes much less light energy to reach the threshold needed to generate a pixel. MoS2 is a naturally abundant, inexpensive material. In addition, Kis explains, the prototype doesn't require any other semi-conductors, which should greatly simplify manufacturing processes. Kis, who is a pioneer in research on the semi-conductivity of molybdenite, recently demonstrated its potential in an integrated circuit and, in early 2013, a flash memory prototoype. With this new step into imaging, molybdenite shows its extraordinary potential in another important area of application.

####

For more information, please click here

Contacts:
Lionel Pousaz

41-795-597-161

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Imaging

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Chip Technology

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Sensors

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Discoveries

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Announcements

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project