Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imec and Holst Centre Unveil Fully-Organic Imager

Fully-organic, flexible imager developed by imec, Holst Centre and Philips Research
Fully-organic, flexible imager developed by imec, Holst Centre and Philips Research

Abstract:
At this week's International Image Sensor Workshop (IISW 2013, Snowbird, Utah, June 12-16 2013), imec and Holst Centre presented a large-area fully-organic photodetector array fabricated on a flexible substrate. The imager is sensitive in the wavelength range suitable for x-ray imaging applications.

Imec and Holst Centre Unveil Fully-Organic Imager

Leuven, Belgium | Posted on June 12th, 2013

Because of their very high absorption coefficient, organic semiconductors allow extremely thin active layers (10 to 50 nm). Also, given their low processing temperature, they can be processed on foils. As a result, organic imagers can be more robust and light-weight compared to their traditional counterparts and may be used for conformal coating of randomly shaped substrates. Moreover, the wide variety of organic molecules available ensures that the properties of the active layer can be tuned to applications requiring specific wavelength ranges.

The presented imager is sensitive in the wavelength range between 500 and 600 nm, making it compatible with typical scintillators and therefore suitable for x-ray imaging applications. It was fabricated by thermally evaporating an ultrathin (submicron) photosensitive layer of small organic molecules (SubPc/C60) on top of an organic readout circuit. A semi-transparent top contact enables front-side illumination. The readout backplane was manufactured on six inch foil-laminated wafers. It consists of pentacene-based thin-film transistors (TFTs) in arrays of 32x32 pixels with varying pitch (1 mm and 200 m). To prevent degradation of the organic semiconductors in the air, the photodetector array is encapsulated. The imager was characterized under illumination with a calibrated green light-emitting diode (LED), yielding a linearly increasing photocurrent from the incident power of 3 W/cm2. Dark current density is below 10-6 A/cm2 at a bias voltage of -2V.

"This latest achievement is a significant step forward in not only finding the optimal materials, but pinpointing the best ways to process materials into reliable organic circuits and systems with state-of-the-art performance," said Paul Heremans, technology director at the imec/Holst Centre. "Once again, we're proud to demonstrate how imec's top-notch research leads to relevant industrial solutions, and subsequently brings added value to our partners' businesses."

This research results are presented in collaboration with Philips Research, at the (2013 International Image Sensor Workshop (IISW), sponsored by the International Image Sensor Society (IISS), June 12-16, 2013.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of more than 2,000 people includes more than 650 industrial residents and guest researchers. In 2012, imec's revenue (P&L) totaled 320 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About Holst Centre

Holst Centre is an independent open-innovation R&D centre that develops generic technologies for Wireless Autonomous Transducer Solutions and for Systems-in-Foil. A key feature of Holst Centre is its partnership model with industry and academia around shared roadmaps and programs. It is this kind of cross-fertilization that enables Holst Centre to tune its scientific strategy to industrial needs.

Holst Centre was set up in 2005 by imec (Flanders, Belgium) and TNO (The Netherlands) with support from the Dutch Ministry of Economic Affairs and the Government of Flanders. It is named after Gilles Holst, a Dutch pioneer in Research and Development and first director of Philips Research.

Located on High Tech Campus Eindhoven, Holst Centre benefits from the state-of-the-art on-site facilities. Holst Centre has over 180 employees from around 28 nationalities and a commitment from more than 45 industrial partners.

Visit us at www.holstcentre.com

For more information, please click here

Contacts:
Imec :
Hanne Degans
External communications officer
T: +32 16 28 17 69
Mobile: +32 486 065 175


Holst Centre :
Koen Snoeckx
Communication Manager
T: +31 40 40 20 561
M: +31 612 71 98 43

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Imaging

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time May 19th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Announcements

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Tools

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Events/Classes

Novel gene therapy shows potential for lung repair in asthma May 18th, 2016

Arrowhead Pharmaceuticals' Preclinical Candidate ARC-LPA Achieves 98% Knockdown and Long Duration of Effect after Subcutaneous Administration May 10th, 2016

Nanometrics Announces Upcoming Investor Events May 10th, 2016

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic