Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The Diabetes ‘Breathalyzer’: Pitt chemists demonstrate sensor technology that could detect and monitor diabetes through breath analysis alone

A transmission electron microscopy image of the hybrid material revealing the formation of “titanium dioxide on a stick.”
A transmission electron microscopy image of the hybrid material revealing the formation of “titanium dioxide on a stick.”

Abstract:
Diabetes patients often receive their diagnosis after a series of glucose-related blood tests in hospital settings, and then have to monitor their condition daily through expensive, invasive methods. But what if diabetes could be diagnosed and monitored through cheaper, noninvasive methods?

The Diabetes ‘Breathalyzer’: Pitt chemists demonstrate sensor technology that could detect and monitor diabetes through breath analysis alone

Pittsburgh, PA | Posted on June 10th, 2013

Chemists at the University of Pittsburgh have demonstrated a sensor technology that could significantly simplify the diagnosis and monitoring of diabetes through breath analysis alone. Their findings were published in the latest issue of the Journal of the American Chemical Society (JACS).

Even before blood tests are administered, those with diabetes often recognize the condition's symptoms through their breath acetone—a characteristic "fruity" odor that increases significantly with high glucose levels. The Pitt team was interested in this biomarker as a possible diagnostic tool.

"Once patients are diagnosed with diabetes, they have to monitor their condition for the rest of their lives," said Alexander Star, principal investigator of the project and Pitt associate professor of chemistry. "Current monitoring devices are mostly based on blood glucose analysis, so the development of alternative devices that are noninvasive, inexpensive, and provide easy-to-use breath analysis could completely change the paradigm of self-monitoring diabetes."

Together with his colleagues—Dan Sorescu, a research physicist at the National Energy Technology Laboratory, and Mengning Ding, a Pitt graduate student studying chemistry—Star used what's called a "sol-gel approach," a method for using small molecules (often on a nanoscale level) to produce solid materials. The team combined titanium dioxide—an inorganic compound widely used in body-care products such as makeup—with carbon nanotubes, which acted as "skewers" to hold the particles together. These nanotubes were used because they are stronger than steel and smaller than any element of silicon-based electronics.

This method, which the researchers playfully call "titanium dioxide on a stick," effectively combined the electrical properties of the tubes with the light-illuminating powers of the titanium dioxide. They then created the sensor device by using these materials as an electrical semiconductor, measuring its electrical resistance (the sensor's signal).

The researchers found the sensor could be activated with light to produce an electrical charge. This prompted them to "cook" the "skewers" in the sensor under ultraviolet light to measure acetone vapors—which they found were lower than previously reported sensitivities.

"Our measurements have excellent detection capabilities," said Star. "If such a sensor could be developed and commercialized, it could transform the way patients with diabetes monitor their glucose levels."

The team is currently working on a prototype of the sensor, with plans to test it on human breath samples soon.

The paper, "Photoinduced Charge Transfer and Acetone Sensitivity of Single-Walled Carbon Nanotube-Titanium Dioxide Hybrids," was first published in JACS online June 5. The work was performed in support of ongoing research at the National Energy Technology Laboratory.

####

For more information, please click here

Contacts:
B. Rose Huber

412-624-4356
Cell: 412-328-6008

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Sensors

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Discoveries

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Dartmouth team creates new method to control quantum systems May 24th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic