Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Mismatched materials can be tough enough: Rice University scientists analyze molecular detail of cement-polymer bonds

Rice University researchers Rouzbeh Shahsavari, left, and Navid Sakhavand analyzed the molecular interface between cement and a polymer in a new Langmuir paper.Credit: Jeff Fitlow/Rice University
Rice University researchers Rouzbeh Shahsavari, left, and Navid Sakhavand analyzed the molecular interface between cement and a polymer in a new Langmuir paper.

Credit: Jeff Fitlow/Rice University

Abstract:
Rice University researchers have for the first time detailed the molecular mechanism that makes a particular combination of cement and polymer glue so tough.

Mismatched materials can be tough enough: Rice University scientists analyze molecular detail of cement-polymer bonds

Houston, TX | Posted on June 10th, 2013

The theoretical research by Rice materials scientist Rouzbeh Shahsavari and his group led to a fine picture of how hydrogen bonds control the properties of hybrid organic-inorganic materials. The finding has implications for understanding the interface bonding that is often a roadblock to improved composite properties.

The research is detailed in the American Chemical Society journal Langmuir.

The Rice researchers said their work has the potential to help fine-tune advanced materials well beyond the cement-polymer compound they studied. "Natural materials like bones, teeth and shells all have a hybrid of soft and stiff material inside, arranged in a brick-and-mortar pattern," Shahsavari said. "This has inspired humans to build engineered composites by mimicking those natural designs."

Building such composites requires a clear understanding of what's happening when materials that aren't necessarily compatible are combined.

"This could have applications for composites in cars, airplanes and civil engineering materials," Shahsavari said. "Here, our focus is on inorganic silicates like cement (a key strengthening component of concrete) interacting with a polymer to provide a hybrid composite with high toughness and ductility. Otherwise, cement by itself is a brittle material."

He said understanding bonds at the molecular level should help manufacturers design stronger, lighter composites from the bottom up. For example, cars that use advanced compounds could be lighter and more fuel-efficient while retaining the toughness that lets them absorb energy in a crash by crumpling instead of shattering. The same analogy is true for civil engineering composites that absorb the energy of an earthquake rather than fracture and collapse.

"Toughness by definition is the ability of the material to deform before fracture," he said.

Shahsaveri, graduate student and lead author Navid Sakhavand and former Rice postdoctoral researcher Prakash Muthuramalingam started by studying recent experiments on polymer-silicate compounds (polyvinyl alcohol mixed with cement in gel form) that suggested hydrogen bonds must be responsible for interfacial adhesion. They determined that very different geometries across the interface of the two materials complicate the process of figuring out the hydrogen-bonding pattern and how the molecules might bond and/or tear under stress.

But it wasn't impossible. The Rice researchers built molecular models that combined strands of polyvinyl alcohol and layered chains of tobermorite, a mineral they said is a natural analog of the previously studied cement gel.

At the molecular interface, they determined the hydrogen bonds most responsible for adhesion don't quite line up. Subjecting their computer models to shear forces showed them how hydrogen bonds on both sides would break and reform as the polymer was pulled across the silicate. Subsequent calculations based on the energies of individual atomic pairs let them determine the seven types of hydrogen bonds possible where the two materials meet, and precisely which type of hydrogen bonds and how many of them should line up for maximum toughness.

This might be a bit counterintuitive, Shahsaveri said, since a hydrogen bond is typically weak, but the cooperative action of several can result in significant adhesion and toughness. This can help determine the optimum overlap length and design parameters for manufacturing tough hybrid composites.

"The overall goal is to improve mechanical properties," Sakhavand said. "We started with concrete, which is the most-used composite material on Earth. Billions of dollars are spent on it every year just in the United States. Any small improvement we can make for concrete is going to significantly change the industry."

The theoretical models they've developed can be applied in many ways, Sakhavand said. "All of these can easily be extended to any synthetic material," he said, suggesting their formula can help experimentalists cut the amount of time spent on trial and error in the design of novel compounds.

The research team performed calculations on the Data Analysis and Visualization Cyber Infrastructure (DAVinCI) system funded by the National Science Foundation and operated by the Ken Kennedy Institute for Information Technology at Rice. An IBM Shared University Research Award in partnership with Cisco, QLogic and Adaptive Computing also supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Multiscale Materials Modeling Lab:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project