Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 2-D electronics take a step forward: Rice, Oak Ridge labs make semiconducting films for atom-thick circuits

Schematics and experimental images produced by Oak Ridge National Laboratory show defects at the 60-degree grain boundaries in two-dimensional samples of molybdenum disulfide. The defects are 5- and 7-atom dislocation cores; the numbers refer to locations where the atomic arrangements veer from regular six-atom hexagons. Their presence indicates a one-dimensional conductive “wire” that runs along the boundary. In the illustration, the molybdenum atoms are cyan and the sulfur atoms are orange and yellow.Credit: Oak Ridge National Laboratory
Schematics and experimental images produced by Oak Ridge National Laboratory show defects at the 60-degree grain boundaries in two-dimensional samples of molybdenum disulfide. The defects are 5- and 7-atom dislocation cores; the numbers refer to locations where the atomic arrangements veer from regular six-atom hexagons. Their presence indicates a one-dimensional conductive “wire” that runs along the boundary. In the illustration, the molybdenum atoms are cyan and the sulfur atoms are orange and yellow.

Credit: Oak Ridge National Laboratory

Abstract:
Scientists at Rice University and Oak Ridge National Laboratory (ORNL) have advanced on the goal of two-dimensional electronics with a method to control the growth of uniform atomic layers of molybdenum disulfide (MDS).

2-D electronics take a step forward: Rice, Oak Ridge labs make semiconducting films for atom-thick circuits

Houston, TX | Posted on June 10th, 2013

MDS, a semiconductor, is one of a trilogy of materials needed to make functioning 2-D electronic components. They may someday be the basis for the manufacture of devices so small they would be invisible to the naked eye.

The work appears online this week in Nature Materials.

The Rice labs of lead investigator Jun Lou, Pulickel Ajayan and Boris Yakobson, all professors in the university's Mechanical Engineering and Materials Science Department, collaborated with Wigner Fellow Wu Zhou and staff scientist Juan-Carlos Idrobo at ORNL in an unusual initiative that incorporated experimental and theoretical work.

The goals were to see if large, high-quality, atomically thin MDS sheets could be grown in a chemical vapor deposition (CVD) furnace and to analyze their characteristics. The hope is that MDS could be joined with graphene, which has no band gap, and hexagonal boron nitride (hBN), an insulator, to form field-effect transistors, integrated logic circuits, photodetectors and flexible optoelectronics.

"For truly atomic circuitry, this is important," Lou said. "If we get this material to work, then we will have a set of materials to play with for complete, complicated devices."

Last year, Lou and Ajayan revealed their success at making intricate patterns of intertwining graphene and hBN, among them the image of Rice's owl mascot. But there was still a piece missing for the materials to be full partners in advanced electronic applications. By then, the researchers were already well into their study of MDS as a semiconducting solution.

"Two-dimensional materials have taken off," Ajayan said. "The study of graphene prompted research into a lot of 2-D materials; molybdenum disulfide is just one of them. Essentially, we are trying to span the whole range of band gaps between graphene, which is a semimetal, and the boron nitride insulator."

MDS is distinct from graphene and hBN because it isn't exactly flat. Graphene and hBN are flat, with arrays of hexagons formed by their constituent atoms. But while MDS looks hexagonal when viewed from above, it is actually a stack, with a layer of molybdenum atoms between two layers of sulfur atoms.

Co-author Zheng Liu, a joint research scientist in Lou's and Ajayan's labs, noted the Yakobson group predicted that MDS and carbon atoms would bind. "We're working on it," he said. "We would like to stick graphene and MDS together (with hBN) into what would be a novel, 2-D semiconductor component."

"The question now is how to bring all the 2-D materials together," said co-author Sina Najmaei, a Rice graduate student. "They're very different species and they're being grown in very different environments."

Until recently, growing MDS in a usable form has been difficult. The "Scotch tape" method of pulling layers from a bulk sample has been tried, but the resulting materials were inconsistent, Lou said. Early CVD experiments produced MDS with grains that were too tiny to be of use for their electrical properties.

But in the process, the researchers noticed "islands" of MDS tended to form in the furnace where defects or even pieces of dust appeared on the substrate. "The material is difficult to nucleate, unlike hBN or graphene," Najmaei said. "We started learning that we could control that nucleation by adding artificial edges to the substrate, and now it's growing a lot better between these structures."

"Now we can grow grain sizes as large as 100 microns," Lou said. That's still only about the width of a human hair, but in the nanoscale realm, it's big enough to work with, he said.

Once the Ajayan and Lou teams were able to grow such large MDS arrays, the ORNL team imaged the atomic structures using aberration-corrected scanning transmission electron microscopy. The atomic array can clearly be seen in the images and, more importantly, so can the defects that alter the material's electronic properties.

"In order to improve the properties of 2-D materials, it's important to first understand how they're put together at a fundamental scale," Idrobo said. "Our microscopy facility at ORNL allows us to see materials in a way they've never been seen before -- down to the level of individual atoms."

Yakobson, a theoretical physicist, and his team specialize in analyzing the interplay of energy at the atomic scale. With ORNL's images in hand, they were not only able to calculate the energies of a much more complex set of defects than are found in graphene or BN but could also match their numbers to the images.

Among the Yakobson team's interesting finds was the existence, reported last year, of conductive subnano "wires" along grain boundaries in MDS. According to their calculations, the effect only occurred when grains met at precise 60-degree angles. The ORNL electron microscopy images make it possible to view these grain boundaries directly.

The Rice researchers see many possible ways to combine the materials, not only in two-dimensional layers but also as three-dimensional stacks. "Natural crystals are made of structures bound by the van der Waals force, but they're all of the same composition," Lou said. "Now we have the opportunity to build 3-D crystals with different compositions."

"These are very different materials, with different electronic properties and band gaps. Putting one on top of the other would give us a new type of material that we call van der Waals solids," Ajayan said. "We could put them together in whatever stacking order we need, which would be an interesting new approach in materials science.

Co-authors of the Nature Materials paper are Rice research associate Xiaolong Zou, graduate students Gang Shi and Sidong Lei, and Wu Zhou at Oak Ridge National Laboratory.

The Welch Foundation, the National Science Foundation (NSF), the U.S. Army Research Office, the U.S. Office of Naval Research, the Nanoelectronics Research Corporation and the Department of Energy supported the work.

Lou is an associate professor of mechanical engineering and materials science. Ajayan is the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of mechanical engineering and materials science, chemistry and chemical and biomolecular engineering. Yakobson is the Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science and a professor of chemistry.

Computations were performed on Rice's DAVinCI system and at the Cyberinfrastructure for Computational Research, both funded by NSF.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Artificially Stacked Atomic Layers: Toward New van der Waals Solids:

Intrinsic Structural Defects in Monolayer Molybdenum Disulfide:

N3L Research Group (Jun Lou):

Ajayan Group:

Yakobson Group:

The Microscopy Group at Oak Ridge National Laboratory:

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Physics

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Graphene/ Graphite

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale: An electron microscope-based lithography system for patterning materials at sizes as small as a single nanometer could be used to create and study materials with new properties May 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Chip Technology

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Research partnerships

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project