Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > FEI and University of Oklahoma Begin Collaboration Research Agreement for Understanding and Developing Unconventional Oil and Gas Reservoirs: Collaboration effort will focus on new methods to classify shales in the economic assessment of “tight” resource plays

Abstract:
FEI (NASDAQ: FEIC) and University of Oklahoma (OU) have commenced a research collaboration agreement to establish an oil and gas center of excellence, the "FEI-OU Pore Scale Characterization Laboratory," at the OU Mewborne School of Petroleum and Geological Engineering (MPGE). The research will focus on the development of routine quantitative methods to classify shales in the economic assessment of tight oil and gas plays. Through the collaboration FEI seeks to further develop its position as the leading supplier of high-resolution imaging solutions to the oil and gas industry by better defining and expanding its role in the characterization of unconventional reservoirs.

FEI and University of Oklahoma Begin Collaboration Research Agreement for Understanding and Developing Unconventional Oil and Gas Reservoirs: Collaboration effort will focus on new methods to classify shales in the economic assessment of “tight” resource plays

Hillsboro, OR | Posted on June 7th, 2013

"There has been tremendous growth in the development of oil and gas found in unconventional shale reservoirs," states Carl Sondergeld, professor at MPGE. "Unlike conventional reservoirs, the pores that hold the oil and gas in shales are very small and poorly connected--hence the term ‘tight'. Petroleum engineers would say they have low porosity and low permeability, making it difficult to extract any hydrocarbons that might be present. FEI's tools allow us to see the pores and organics directly, view the material they contain, and actually reconstruct three-dimensional (3D) models of the pore network. The challenge now is to relate these nanometer-scale features to the large-scale geological and petrophysical characteristics that determine the economic potential of a particular reservoir."

According to Rudy Kellner, vice president of FEI's Industry Group, "FEI has a strong track record of transforming laboratory methods into industrial solutions, for example, our systems have become critical in the semiconductor manufacturing industry for process control and failure analysis. We would like to replicate that success as the leading provider of ‘information from images' in the upstream oil and gas industry. Collaborating in the development of external resources, like this FEI-OU Pore Scale Characterization Laboratory, allows us to acquire a deeper understanding of the industry's challenges and our role in providing solutions."

The collaboration agreement includes FEI's Helios NanoLab™ 650 DualBeam™ and QEMSCAN® automated mineralogy tool. The DualBeam uses a scanning electron microscope (SEM), to provide high-resolution imaging, and a focused ion beam (FIB), to remove thin slices of the sample, allowing the reconstruction of a high-resolution 3D model of the pore network. The QEMSCAN combines SEM and X-ray spectrometry to automatically analyze mineral content, lithology (rock type), and various other petrographic characteristics.

Sondergeld explains, "The real challenge in this application is that we are measuring micrometers of the sample and trying to extrapolate the results to kilometers of resources. A key objective in our collaboration will be to link nano-scale observations to large-scale petrophysical parameters relevant to economic decision making in the exploration and development of shale gas reservoirs. This means imaging and analyzing the micro- and nano-scale structures with QEMSCAN and DualBeam technology and reconciling the results with conventional macroscopic measurement technologies, such as mercury injection, NMR, CT scanning, core fracturing studies and others, to build better reservoir models."

Currently, predicting the potential value of tight gas discoveries is difficult. For example, hydraulic fracturing is largely a trial and error process. Better understanding of the parameters that govern fracturing may allow customization of materials and procedures based on the reservoir rock's microstructure and matrix composition to increase revenues and margins. As another example, initial production rates and decline rates are difficult to predict. Understanding the linkage between microscopic structure and petrophysical characteristics may support better choices of production sites and stage design.

"Looking even further ahead, we may be able to infer the maturity of organic matter from the morphology of the organic particles and the surrounding texture, or to determine if anisotropy can be used to map organic richness," said Sondergeld. "Anything we can do to reduce uncertainty in exploitation and reservoir evaluation will have great value to the industry," he adds.

For more information about FEI's products for the oil and gas industry, please visit www.fei-natural-resources.com/oil-gas/ or contact your local sales representative.

####

About FEI Company
FEI (Nasdaq: FEIC) is a leading supplier of scientific instruments for nano-scale applications and solutions for industry and science. With more than 60 years of technological innovation and leadership, FEI has set the performance standard in transmission electron microscopes (TEM), scanning electron microscopes (SEM) and DualBeams™, which combine a SEM with a focused ion beam (FIB). FEI has over 2,500 employees and sales and service operations in more than 50 countries around the world.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of FEI’s Helios NanoLab™ 650 DualBeam™ and QEMSCAN® automated mineralogy tool. Factors that could affect these forward-looking statements include but are not limited to failure of the collaboration to achieve its anticipated results, failure of the product or technology to perform as expected and achieve anticipated results or cost savings, unexpected technology problems and challenges, changes to the technology, the inability of FEI, its suppliers or project partners to make the technological advances required for the technology to achieve anticipated results, the inability of customers to develop and deploy the expected new applications and our ability to manufacture, ship and deliver the tools or software as expected. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

For more information, please click here

Contacts:
Sandy Fewkes
(media contact)
MindWrite Communications, Inc.
+1 408 224 4024


FEI Company
Fletcher Chamberlin
(investors and analysts)
Investor Relations
+1 503 726 7710

Copyright © FEI Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Announcements

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Alliances/Trade associations/Partnerships/Distributorships

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic