Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New microfluidic method expands toolbox for nanoparticle manipulation

The 2-D microfluidic trap. a) Optical micrograph of a microfluidic manipulation device. Single particles are confined at a predetermined location within the junction of two perpendicular microchannels (trapping region). Two on-chip membrane valves (black) positioned above one inlet channel and one outlet channel are used as metering valves to control the relative flow rates through the opposing channels (red), thereby manipulating and trapping particles at the microchannel junction. b) Schematic of 2-D particle trapping. Two opposing laminar streams meet at the intersection of two perpendicular microchannels, creating a well-defined flow field containing a stagnation point where an object is trapped. c) The microfluidic manipulation device consists of a glass coverslip and a PDMS slab containing the microchannels and valves. Reprinted with permission 2013 American Chemical Society.
The 2-D microfluidic trap. a) Optical micrograph of a microfluidic manipulation device. Single particles are confined at a predetermined location within the junction of two perpendicular microchannels (trapping region). Two on-chip membrane valves (black) positioned above one inlet channel and one outlet channel are used as metering valves to control the relative flow rates through the opposing channels (red), thereby manipulating and trapping particles at the microchannel junction. b) Schematic of 2-D particle trapping. Two opposing laminar streams meet at the intersection of two perpendicular microchannels, creating a well-defined flow field containing a stagnation point where an object is trapped. c) The microfluidic manipulation device consists of a glass coverslip and a PDMS slab containing the microchannels and valves.

Reprinted with permission 2013 American Chemical Society.

Abstract:
Researchers at the University of Illinois at Urbana-Champaign have developed a new flow-based method for manipulating and confining single particles in free solution, a process that will help address current challenges faced by nanoscientists and engineers.

New microfluidic method expands toolbox for nanoparticle manipulation

Urbana, IL | Posted on June 5th, 2013

"This method is a first-of-its-kind tool for manipulation and trapping of small nanoparticles in solution," explained Charles M. Schroeder, an assistant professor in the Department of Chemical and Biomolecular Engineering at Illinois. "Using fluid flow in a microfluidic device means that electrical, magnetic, optical, or acoustic force fields are not necessary."

The new method and the research to develop it were published in the May 2013 issue of Nano Letters, in a paper, "Manipulation and Confinement of Single Particles Using Fluid Flow," authored by Schroeder and postdoctoral researcher Melikhan Tanyeri. The research was performed in Schroeder's laboratory located in Roger Adams Lab on the Illinois campus.

Today, fine-scale manipulation of small particles remains a major challenge in the field. Current methods for particle trapping mainly rely on electrokinetic, magnetic, or optical force fields, which may not be compatible with biomolecules or biological systems.

Together, Schroeder and Tanyeri developed a "microfluidic trap" capable of 2-D particle manipulation using the sole action of fluid flow.

Schroeder and researchers demonstrate several unique features of the microfluidic trap, including 2-D manipulation of particles as small as 500 nanometers in size in water, with a positioning precision of only about 180 nanometers, trapping of particles as small as 100 nanometers, and active control over the solution conditions of a trapped particle. All of this is achieved with a simple PDMS-based microfluidic device without the need for complex instrumentation for optical trapping or electric field generation.

"The microfluidic trap provides a fundamentally new method for the trapping and analysis of single particles or single molecules, complementing existing techniques," Schroeder said. "Our new technology will find pervasive use in interdisciplinary fields such as nanoscience, materials science, complex fluids, soft materials, microbiology, and molecular biology."

Schroeder and Tanyeri said they now have the ability to trap a range of particle sizes.

"Unlike existing methods such as conventional optical or magnetic traps, the microfluidic trap will allow for trapping of tiny nanoparticles, less than 30 nanometers in free solution," Tanyeri said.

With the precise positional control of single nanoparticles in free solution, scientists will be able to explore new technologies, from molecular engineering to bottom-up assembly of nanostructures.

"Fluidic-directed assembly may further enhance existing lithographic, self-assembly, and surface patterning approaches for fabricating nanoscale functional materials and devices," Tanyeri said. "This is a key technological advance that will help to address problems in nanoscience and engineering that are inaccessible to current methods, such as directed assembly and patterning of soft materials."

####

For more information, please click here

Contacts:
Charles M. Schroeder

217-333-3906

Writer:
Sarah Williams
assistant director of communications
Department of Chemical and Biomolecular Engineering
217/244-0541

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Microfluidics/Nanofluidics

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Blacktrace Holdings Ltd. to in-license PerkinElmer Technology August 8th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Dolomite announces exclusive agreement for the sale of compact microfluidic pressure and vacuum pumps for pneumatic control systems in microfluidics, chemistry and mechatronics August 5th, 2014

Self Assembly

Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures August 11th, 2014

Self-assembly of gold nanoparticles into small clusters August 4th, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Discoveries

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Sunblock poses potential hazard to sea life August 20th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Announcements

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Printing/Lithography/Inkjet/Inks

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Iranian Scientists Produce Cobalt–Alumina Ceramic Nano Inks August 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE