Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New microfluidic method expands toolbox for nanoparticle manipulation

The 2-D microfluidic trap. a) Optical micrograph of a microfluidic manipulation device. Single particles are confined at a predetermined location within the junction of two perpendicular microchannels (trapping region). Two on-chip membrane valves (black) positioned above one inlet channel and one outlet channel are used as metering valves to control the relative flow rates through the opposing channels (red), thereby manipulating and trapping particles at the microchannel junction. b) Schematic of 2-D particle trapping. Two opposing laminar streams meet at the intersection of two perpendicular microchannels, creating a well-defined flow field containing a stagnation point where an object is trapped. c) The microfluidic manipulation device consists of a glass coverslip and a PDMS slab containing the microchannels and valves. Reprinted with permission 2013 American Chemical Society.
The 2-D microfluidic trap. a) Optical micrograph of a microfluidic manipulation device. Single particles are confined at a predetermined location within the junction of two perpendicular microchannels (trapping region). Two on-chip membrane valves (black) positioned above one inlet channel and one outlet channel are used as metering valves to control the relative flow rates through the opposing channels (red), thereby manipulating and trapping particles at the microchannel junction. b) Schematic of 2-D particle trapping. Two opposing laminar streams meet at the intersection of two perpendicular microchannels, creating a well-defined flow field containing a stagnation point where an object is trapped. c) The microfluidic manipulation device consists of a glass coverslip and a PDMS slab containing the microchannels and valves.

Reprinted with permission 2013 American Chemical Society.

Abstract:
Researchers at the University of Illinois at Urbana-Champaign have developed a new flow-based method for manipulating and confining single particles in free solution, a process that will help address current challenges faced by nanoscientists and engineers.

New microfluidic method expands toolbox for nanoparticle manipulation

Urbana, IL | Posted on June 5th, 2013

"This method is a first-of-its-kind tool for manipulation and trapping of small nanoparticles in solution," explained Charles M. Schroeder, an assistant professor in the Department of Chemical and Biomolecular Engineering at Illinois. "Using fluid flow in a microfluidic device means that electrical, magnetic, optical, or acoustic force fields are not necessary."

The new method and the research to develop it were published in the May 2013 issue of Nano Letters, in a paper, "Manipulation and Confinement of Single Particles Using Fluid Flow," authored by Schroeder and postdoctoral researcher Melikhan Tanyeri. The research was performed in Schroeder's laboratory located in Roger Adams Lab on the Illinois campus.

Today, fine-scale manipulation of small particles remains a major challenge in the field. Current methods for particle trapping mainly rely on electrokinetic, magnetic, or optical force fields, which may not be compatible with biomolecules or biological systems.

Together, Schroeder and Tanyeri developed a "microfluidic trap" capable of 2-D particle manipulation using the sole action of fluid flow.

Schroeder and researchers demonstrate several unique features of the microfluidic trap, including 2-D manipulation of particles as small as 500 nanometers in size in water, with a positioning precision of only about 180 nanometers, trapping of particles as small as 100 nanometers, and active control over the solution conditions of a trapped particle. All of this is achieved with a simple PDMS-based microfluidic device without the need for complex instrumentation for optical trapping or electric field generation.

"The microfluidic trap provides a fundamentally new method for the trapping and analysis of single particles or single molecules, complementing existing techniques," Schroeder said. "Our new technology will find pervasive use in interdisciplinary fields such as nanoscience, materials science, complex fluids, soft materials, microbiology, and molecular biology."

Schroeder and Tanyeri said they now have the ability to trap a range of particle sizes.

"Unlike existing methods such as conventional optical or magnetic traps, the microfluidic trap will allow for trapping of tiny nanoparticles, less than 30 nanometers in free solution," Tanyeri said.

With the precise positional control of single nanoparticles in free solution, scientists will be able to explore new technologies, from molecular engineering to bottom-up assembly of nanostructures.

"Fluidic-directed assembly may further enhance existing lithographic, self-assembly, and surface patterning approaches for fabricating nanoscale functional materials and devices," Tanyeri said. "This is a key technological advance that will help to address problems in nanoscience and engineering that are inaccessible to current methods, such as directed assembly and patterning of soft materials."

####

For more information, please click here

Contacts:
Charles M. Schroeder

217-333-3906

Writer:
Sarah Williams
assistant director of communications
Department of Chemical and Biomolecular Engineering
217/244-0541

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Microfluidics/Nanofluidics

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Device extracts rare tumor cells using sound: Microfluidic chip developed by CMU President Suresh and collaborators uses acoustic waves to separate circulating tumor cells from blood cells April 7th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Self Assembly

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

In situ production of biofunctionalised few-layer defect-free microsheets of graphene April 7th, 2015

Discoveries

Ethylene Nanosorbent, a Novel Product to Decrease Agricultural Waste April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Printing/Lithography/Inkjet/Inks

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

Inkjet-printed liquid metal could bring wearable tech, soft robotics April 8th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project