Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Spintronics approach enables new quantum technologies

This artist’s rendering shows all-optical control of an individual electronic spin within a diamond. This spin is associated with a naturally occurring defect in diamond known as the nitrogen-vacancy center, a promising quantum bit (qubit) for quantum information processing. The University of Chicago’s David Awschalom and his associates have developed techniques to initialize, manipulate, and read out the electronic spin of this qubit using only pulses of light.
Illustration by Peter Allen
This artist’s rendering shows all-optical control of an individual electronic spin within a diamond. This spin is associated with a naturally occurring defect in diamond known as the nitrogen-vacancy center, a promising quantum bit (qubit) for quantum information processing. The University of Chicago’s David Awschalom and his associates have developed techniques to initialize, manipulate, and read out the electronic spin of this qubit using only pulses of light.

Illustration by Peter Allen

Abstract:
A team of researchers, including members of the University of Chicago's Institute for Molecular Engineering, highlight the power of emerging quantum technologies in two recent papers published in the Proceedings of the National Academy of Sciences. These technologies exploit quantum mechanics, the physics that dominates the atomic world, to perform disparate tasks such as nanoscale temperature measurement and processing quantum information with lasers.

Spintronics approach enables new quantum technologies

Chicago, IL | Posted on June 4th, 2013

The two papers are both based on the manipulation of the same material, an atomic-scale defect in diamond known as the nitrogen vacancy center. Both works also leverage the intrinsic "spin" of this defect for the applications in temperature measurement and information processing. This spintronics approach involves understanding and manipulating the spin of electronics for technological advancement.

"These studies build on research efforts undertaken over the last 20 years to isolate and control single electronic spins in the solid state," said David Awschalom, a principle investigator on both papers and a Liew Family Professor in Molecular Engineering at UChicago. "Much of the initial motivation for working in this field was driven by the desire to make new computing technologies based on the principles of quantum physics. In recent years the research focus has broadened as we've come to appreciate that these same principles could enable a new generation of nanoscale sensors."
Controlling qubits with light

In one PNAS paper posted April 22 and published in the May 7 print edition, Awschalom and six co-authors at the University of California, Santa Barbara and the University of Konstanz describe a technique that offers new routes toward the eventual creation of quantum computers, which would possess far more capability than modern classical computers.

In this application, Awschalom's team has developed protocols to fully control the quantum state of the defect with light instead of electronics. The quantum state of interest in this defect is its electronic spin, which acts as quantum bit, or qubit, the basic unit of a quantum computer. In classical computers, bits of information exist in one of only two states: zero or one. In the quantum mechanical realm, objects can exist in multiple states at once, enabling more complex processing.

This all-optical scheme for controlling qubits in semiconductors "obviates the need to have microwave circuits or electronic networks," Awschalom said. "Instead, everything can be done solely with photons, with light."

As a fully optical method, it shows promise as a more scalable approach to qubit control. In addition, this scheme is more versatile than conventional methods and could be used to explore quantum systems in a broad range of materials that might otherwise be difficult to develop as quantum devices.
Single spin thermometers

The quantum thermometer application, reported in a PNAS contribution posted online May 6 and published in the May 21 print edition, represents a new direction for the manipulation of quantum states, which is more commonly linked to computing, communications, and encryption. In recent years, defect spins had also emerged as promising candidates for nanoscale sensing of magnetic and electric fields at room temperature. With thermometry now added to the list, Awschalom foresees the possibility of developing a multifunctional probe based on quantum physics.

"With the same sensor you could measure magnetic fields, electric fields and now temperature, all with the same probe in the same place at approximately the same time," he said. "Perhaps most importantly, since the sensor is an atomic-scale defect that could be contained within nanometer-scale particles of diamond, you can imagine using this system as a thermometer in challenging environments such as living cells or microfluidic circuits."

The key aspect of this innovation is the development of control techniques for manipulating the spin that make it a much more sensitive probe of temperature shifts. "We've been exploring the potential of defect spins for thermometry for the past few years," said David Toyli, a graduate student in physics at UCSB and lead author of the temperature sensing work.

"This latest work is exciting because we've succeeded in adapting techniques used for stabilizing quantum information to measuring temperature-dependent changes in the quantum states. These techniques minimize the effects of environmental noise and allow us to make much more sensitive temperature measurements."

The team of researchers, also including Slava Dobrovitski of the Department of Energy's Ames Laboratory in Iowa, conducted experiments to determine the temperature range over which the spins could operate as a useful thermometer. It turns out that the particle spins can operate quite well at a wide temperature range, from room temperature to 500 degrees Kelvin (approximately 70 to 400 degrees Fahrenheit).

The chemical properties of a diamond-based thermometer also support the idea that this system could be useful for measuring temperature gradients in biological systems, such as the interior of living cells, Awschalom said. But the initial studies suggest the method is so flexible that it probably lends itself to uses yet to be imagined. "Like any new technology development, the exciting thing is what people will do with this now."

Citations

"All-optical control of a solid-state spin using coherent dark states," by Christopher G. Yale, Bob B. Buckley, David J. Christle, Guido Burkard, F. Joseph Heremans, Lee C. Bassett, and David D. Awschalom, Proceedings of the National Academy of Sciences, Vol. 110, No. 19, May 7, 2013, pages 7595-7600, originally published online April 22, 2013.

"Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond," by David M. Toyli, Charles F. de las Casas, David J. Christle, Viatcheslav V. Dobrovitski, and David D. Awschalom, Proceedings of the National Academy of Sciences, Vol. 110, No. 21, May 21, 2013, pages 8417-8421, originally published

####

For more information, please click here

Contacts:
Steve Koppes

773-702-8366

Copyright © University of Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Physics

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Spintronics

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Quantum Computing

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Discoveries

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Announcements

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Military

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Photonics/Optics/Lasers

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Quantum nanoscience

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE