Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Asylum Research Hosts a New Webinar June 26: “Contact Resonance Tools for AFM Nanomechanics”

Modulus map of plant cell walls acquired on Asylum Research Cypher™ AFM. Sample provided by Dr. Bryon Donohoe (NREL). Image courtesy of Dr. Jason Killgore (NIST).
Modulus map of plant cell walls acquired on Asylum Research Cypher™ AFM. Sample provided by Dr. Bryon Donohoe (NREL).

Image courtesy of Dr. Jason Killgore (NIST).

Abstract:
Asylum Research, an Oxford Instruments company, will host a new webinar on June 26, 2013, "Contact Resonance Tools for AFM Nanomechanics". Dr. Donna Hurley, Project Leader at the National Institute of Standards and Technology (NIST) and Asylum Research President and co-founder, Dr. Roger Proksch, will be presenting and taking questions. The webinar is focused on materials scientists looking to probe nanomechanical properties and measuring moduli in the 1 to 200 GPa range for materials such as composites, thin films, biomaterials and polymer blends.

Asylum Research Hosts a New Webinar June 26: “Contact Resonance Tools for AFM Nanomechanics”

Santa Barbara, CA | Posted on June 3rd, 2013

"Nanoscale information on mechanical properties is critical for many advanced materials and nanotechnology applications," commented Hurley. "While there are a large number of techniques for more compliant samples, few techniques are capable of measuring moduli in the 1 to 200 GPa range. Contact resonance is an excellent technique for sensitive, quantitative measurements for these materials. This webinar will be an excellent education for researchers wanting to learn more about the technique."

The webinar will cover the basic concepts of contact resonance measurements with different approaches including point spectroscopy, qualitative contrast imaging, and quantitative mapping. Discussion will also include practical implementation of contact resonance to a variety of samples and some of the pitfalls and artifacts that may be encountered. Finally, results will be presented on how CR methods have been used to improve the understanding of systems such as composites, thin films, biomaterials, and polymer blends.

Registration for the 8:00am session is at https://www3.gotomeeting.com/register/387749262 .
Registration for the 4:00pm session is at https://www3.gotomeeting.com/register/247844302 .

####

About Asylum Research, an Oxford Instruments company
Asylum Research is the technology leader in atomic force microscopy for both materials and bioscience applications, dedicated to innovative instrumentation for nanoscience and nanotechnology. Founded in 1999, Asylum Research has over 300 years combined AFM/SPM experience among our staff. Asylum Research AFMs are used for a variety of nanoscience applications in material science, physics, polymers, chemistry, biomaterials, and bioscience, including single molecule mechanical experiments on DNA, protein unfolding and polymer elasticity, as well as force measurements for biomaterials, chemical sensing, polymers, colloidal forces, adhesion, and more.

Asylum’s MFP-3D™ family of AFMs sets the standard for AFM technology, with unprecedented precision and flexibility. Four configurations now comprise the MFP-3D family. The MFP-3D Origin, the most affordable member, offers performance and full upgrade potential. The full MFP-3D provides performance with the maximum versatility of a wide range of modes and accessories. The MFP-3D-BIO™ is the only full capability AFM integrated with commercial inverted optical microscopes for advanced bioscience research. In addition, our MFP NanoIndenter™ offers the only true instrumented indenting for quantitative measurements.
 
The Cypher™ AFM is the highest resolution fast scanning AFM, now with environmental control.  Cypher provides low-drift closed loop atomic resolution for the most accurate images and measurements possible today, point defect atomic resolution, >20X faster AC imaging with small cantilevers, Spot-On™ automated laser and photodetector alignment for easy setup, integrated thermal, acoustic and vibration control, and broad support for all major AFM/SPM scanning modes and capabilities.

Asylum Research offers the best warranties in the industry, ranging from two to five years, along with unmatched customer support. Asylum has global sales and service offices in Germany, UK, Japan, Shanghai and Taiwan.

About Oxford Instruments plc

Oxford Instruments designs, supplies and supports high-technology tools and systems with a focus on research and industrial applications. It provides solutions needed to advance fundamental physics research and its transfer into commercial nanotechnology applications. Innovation has been the driving force behind Oxford Instruments' growth and success for over 50 years, and its strategy is to effect the successful commercialization of these ideas by bringing them to market in a timely and customer-focused fashion. 

The first technology business to be spun out from Oxford University over fifty years ago, Oxford Instruments is now a global company with over 2000 staff worldwide and is listed on the FTSE250 index of the London Stock Exchange (OXIG).  Its objective is to be the leading provider of new generation tools and systems for the research and industrial sectors.

This involves the combination of core technologies in areas such as low temperature, high magnetic field and ultra high vacuum environments, Nuclear Magnetic Resonance, X-ray, electron and optical based metrology, and advanced growth, deposition and etching.

Oxford Instruments aims to pursue responsible development and deeper understanding of our world through science and technology. Its products, expertise, and ideas address global issues such as energy, environment, security and health.  

For more information, please click here

Contacts:

Asylum Research
Terry Mehr
Director of Marketing

805-696-6466

Copyright © Asylum Research, an Oxford Instruments company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project