Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Patent for Coaxial Nanofibre Production: Scientists from Contipro have patented new jet for effective coaxial nanofibers production

Abstract:
Although nanofibres are thousands of times finer than a human hair, with current technology scientists can produce fibres of this size where the inside is made with a different material from the outer coating. However, this success has mainly been limited to laboratory, as the switch to full-scale production has proved to be a very difficult technical problem.

Patent for Coaxial Nanofibre Production: Scientists from Contipro have patented new jet for effective coaxial nanofibers production

Czech Republic | Posted on May 31st, 2013

Contipro's scientists have now managed to overcome the obstacles hampering the industrial production of coaxial nanofibres. To increase the production of coaxial fibres, they have developed a jet, the patent for which has been published this month. The invention's European creators expect this to result in particular in the possibility of transferring the preparation of coaxial fibres from the laboratory to genuinely industrial-scale production. The advantage of the jet, besides the amount it can produce, is that it is easy to clean and maintain.

Coaxial fibres can potentially be used for a number of interesting applications. The fibre coating, for example, can be made from quickly soluble material which releases a large amount of substance from the huge surface of nanofibres in a short time. Conversely, the middle of a fibre can retain its mechanical properties and release only small quantities of substance over an extended period. The correct timing can be controlled for all of these processes. A particular application could be for the decoupling materials used in operations of the abdominal cavity. Over the space of a few days, a substance is released from the fibre coating that prevents inflammation. Then, after two weeks of healing, the fibre core releases an agent promoting tissue regeneration. After two weeks, the material, having prevented unwanted accretions and accelerated the healing process, is completely dissolved.

A device 4SPIN introduced by the same group of developers in Japan at the start of the year is to focus on these new applications. This device, approximately a metre in height, facilitates laboratory research and the development of nano-materials for tissue engineering and other fields unrelated to medicine. According to its creators, the device's main advantage is its emphasis on processing difficult-to-spin polymers and the possibility of almost perfectly aligning nanofibres.

####

About Contipro Biotech
Contipro Biotech is an innovative company from the Czech Republic primarily focusing on bio and nanotechnology. Its laboratory apparatus 4SPIN is able to process a wide range of natural and synthetic polymers with highly repeatable results. Due to its modular character and friendly user interface, many crucial properties such as fiber alignment, diameter or fiber density can be easily controlled and optimized. Contipro can offer scientific support for processing of biopolymers, as well as the materials used for nanoapplications in medicine. There are more than 90 researchers employed in company's R&D laboratories and research is backed by twenty years of experience. Contipro is a world leading company in hyaluronan chemistry.

For more information, please click here

Contacts:
Tomas Papez
Contipro Group
(420) 606 747 097

Copyright © Contipro Biotech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Materials/Metamaterials

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Patents/IP/Tech Transfer/Licensing

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Therapeutic Solutions International Licenses Dexosome Clinical Stage Cancer Immunotherapy Product From Gustave Roussy European Cancer Centre: FDA Cleared Immuno-Oncology Technology to Resume Clinical Development for Solid Tumor Patients January 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic