Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Patent for Coaxial Nanofibre Production: Scientists from Contipro have patented new jet for effective coaxial nanofibers production

Abstract:
Although nanofibres are thousands of times finer than a human hair, with current technology scientists can produce fibres of this size where the inside is made with a different material from the outer coating. However, this success has mainly been limited to laboratory, as the switch to full-scale production has proved to be a very difficult technical problem.

Patent for Coaxial Nanofibre Production: Scientists from Contipro have patented new jet for effective coaxial nanofibers production

Czech Republic | Posted on May 31st, 2013

Contipro's scientists have now managed to overcome the obstacles hampering the industrial production of coaxial nanofibres. To increase the production of coaxial fibres, they have developed a jet, the patent for which has been published this month. The invention's European creators expect this to result in particular in the possibility of transferring the preparation of coaxial fibres from the laboratory to genuinely industrial-scale production. The advantage of the jet, besides the amount it can produce, is that it is easy to clean and maintain.

Coaxial fibres can potentially be used for a number of interesting applications. The fibre coating, for example, can be made from quickly soluble material which releases a large amount of substance from the huge surface of nanofibres in a short time. Conversely, the middle of a fibre can retain its mechanical properties and release only small quantities of substance over an extended period. The correct timing can be controlled for all of these processes. A particular application could be for the decoupling materials used in operations of the abdominal cavity. Over the space of a few days, a substance is released from the fibre coating that prevents inflammation. Then, after two weeks of healing, the fibre core releases an agent promoting tissue regeneration. After two weeks, the material, having prevented unwanted accretions and accelerated the healing process, is completely dissolved.

A device 4SPIN introduced by the same group of developers in Japan at the start of the year is to focus on these new applications. This device, approximately a metre in height, facilitates laboratory research and the development of nano-materials for tissue engineering and other fields unrelated to medicine. According to its creators, the device's main advantage is its emphasis on processing difficult-to-spin polymers and the possibility of almost perfectly aligning nanofibres.

####

About Contipro Biotech
Contipro Biotech is an innovative company from the Czech Republic primarily focusing on bio and nanotechnology. Its laboratory apparatus 4SPIN is able to process a wide range of natural and synthetic polymers with highly repeatable results. Due to its modular character and friendly user interface, many crucial properties such as fiber alignment, diameter or fiber density can be easily controlled and optimized. Contipro can offer scientific support for processing of biopolymers, as well as the materials used for nanoapplications in medicine. There are more than 90 researchers employed in company's R&D laboratories and research is backed by twenty years of experience. Contipro is a world leading company in hyaluronan chemistry.

For more information, please click here

Contacts:
Tomas Papez
Contipro Group
(420) 606 747 097

Copyright © Contipro Biotech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Nanomedicine

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Polymeric Nanocarriers Improve Performance of Anticancer Drugs April 30th, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

Materials/Metamaterials

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Polymeric Nanocarriers Improve Performance of Anticancer Drugs April 30th, 2015

No Hogwarts invitation required: Invisibility cloaks move into the real-life classroom: A new solid-state device can demonstrate the physical principles of invisibility cloaks without special equipment or magic spells April 30th, 2015

Announcements

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Patents/IP/Tech Transfer/Licensing

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Heat-Converting Material Patents Licensed April 8th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project