Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Organic polymers show sunny potential: Rice, Penn State labs lay groundwork for block copolymer solar cells

Researchers at Rice and Pennsylvania State universities have created solar cells based on block copolymers, self-assembling organic materials that arrange themselves into distinct layers.Credit: Verduzco Laboratory/Rice University
Researchers at Rice and Pennsylvania State universities have created solar cells based on block copolymers, self-assembling organic materials that arrange themselves into distinct layers.

Credit: Verduzco Laboratory/Rice University

Abstract:
A new version of solar cells created by laboratories at Rice and Pennsylvania State universities could open the door to research on a new class of solar energy devices.

Organic polymers show sunny potential: Rice, Penn State labs lay groundwork for block copolymer solar cells

Houston, TX | Posted on May 30th, 2013

The photovoltaic devices created in a project led by Rice chemical engineer Rafael Verduzco and Penn State chemical engineer Enrique Gomez are based on block copolymers, self-assembling organic materials that arrange themselves into distinct layers. They easily outperform other cells with polymer compounds as active elements.

The discovery is detailed online in the American Chemical Society journal Nano Letters.

While commercial, silicon-based solar cells turn about 20 percent of sunlight into electricity and experimental units top 25 percent, there's been an undercurrent of research into polymer-based cells that could greatly reduce the cost of solar energy, Verduzco said. The Rice/Penn State cells reach about 3 percent efficiency, but that's surprisingly better than other labs have achieved using polymer compounds.

"You need two components in a solar cell: one to carry (negative) electrons, the other to carry positive charges," Verduzco said. The imbalance between the two prompted by the input of energy - sunlight - creates useful current.

Since the mid-1980s, researchers have experimented with stacking or mixing polymer components with limited success, Verduzco said. Later polymer/fullerene mixtures topped 10 percent efficiency, but the fullerenes - in this case, enhanced C-60 buckyballs - are difficult to work with, he said.

The Rice lab discovered a block copolymer P3HT-b-PFTBT that separates into bands that are about 16 nanometers wide. More interesting to the researchers was the polymers' natural tendency to form bands perpendicular to the glass. The copolymer was created in the presence of a glass/indium tin oxide (ITO) top layer at a modest 165 degrees Celsius.

With a layer of aluminum on the other side of the device constructed by the Penn State team, the polymer bands stretched from the top to bottom electrodes and provided a clear path for electrons to flow.

"On paper, block copolymers are excellent candidates for organic solar cells, but no one has been able to get very good photovoltaic performance using block copolymers," Verduzco said. "We didn't give up on the idea of block copolymers because there's really only been a handful of these types of solar cells previously tested. We thought getting good performance using block copolymers was possible if we designed the right materials and fabricated the solar cells under the right conditions."

Mysteries remain, he said. "It's not clear why the copolymer organizes itself perpendicular to the electrodes," he said. "Our hypothesis is that both polymers want to be in contact with the ITO-coated glass. We think that forces this orientation, though we haven't proven it yet."

He said the researchers want to experiment with other block copolymers and learn to control their structures to increase the solar cell's ability to capture photons and turn them into electricity. Once they have achieved higher performance from the cells, the team will look at long-term use.

"We'll focus on performance first, because if we can't get it high enough, there's no reason to address some of the other challenges like stability," Verduzco said. Encapsulating a solar cell to keep air and water from degrading it is easy, he said, but protecting it from ultraviolet degradation over time is hard. "You have to expose it to sunlight. That you can't avoid."

Co-authors of the paper are Rice graduate students Yen-Hao Lin and Kendall Smith; Penn State graduate student Changhe Guo and undergraduate Matthew Witman; Argonne National Laboratory researcher Joseph Strzalka; Lawrence Berkeley National Laboratory postdoctoral researcher Cheng Wang and staff scientist Alexander Hexemer; and Enrique Gomez, an assistant professor in the Penn State Department of Chemical Engineering. Verduzco is an assistant professor of chemical and biomolecular engineering.

The National Science Foundation, the Department of Energy, the Welch Foundation, the Shell Center for Sustainability and the Louis and Peaches Owen Family Foundation supported the research.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728


Follow Rice News and Media Relations via Twitter @RiceUNews

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Verduzco Laboratory:

Best research-cell efficiency chart:

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Discoveries

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Research partnerships

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project