Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Organic polymers show sunny potential: Rice, Penn State labs lay groundwork for block copolymer solar cells

Researchers at Rice and Pennsylvania State universities have created solar cells based on block copolymers, self-assembling organic materials that arrange themselves into distinct layers.Credit: Verduzco Laboratory/Rice University
Researchers at Rice and Pennsylvania State universities have created solar cells based on block copolymers, self-assembling organic materials that arrange themselves into distinct layers.

Credit: Verduzco Laboratory/Rice University

Abstract:
A new version of solar cells created by laboratories at Rice and Pennsylvania State universities could open the door to research on a new class of solar energy devices.

Organic polymers show sunny potential: Rice, Penn State labs lay groundwork for block copolymer solar cells

Houston, TX | Posted on May 30th, 2013

The photovoltaic devices created in a project led by Rice chemical engineer Rafael Verduzco and Penn State chemical engineer Enrique Gomez are based on block copolymers, self-assembling organic materials that arrange themselves into distinct layers. They easily outperform other cells with polymer compounds as active elements.

The discovery is detailed online in the American Chemical Society journal Nano Letters.

While commercial, silicon-based solar cells turn about 20 percent of sunlight into electricity and experimental units top 25 percent, there's been an undercurrent of research into polymer-based cells that could greatly reduce the cost of solar energy, Verduzco said. The Rice/Penn State cells reach about 3 percent efficiency, but that's surprisingly better than other labs have achieved using polymer compounds.

"You need two components in a solar cell: one to carry (negative) electrons, the other to carry positive charges," Verduzco said. The imbalance between the two prompted by the input of energy - sunlight - creates useful current.

Since the mid-1980s, researchers have experimented with stacking or mixing polymer components with limited success, Verduzco said. Later polymer/fullerene mixtures topped 10 percent efficiency, but the fullerenes - in this case, enhanced C-60 buckyballs - are difficult to work with, he said.

The Rice lab discovered a block copolymer — P3HT-b-PFTBT — that separates into bands that are about 16 nanometers wide. More interesting to the researchers was the polymers' natural tendency to form bands perpendicular to the glass. The copolymer was created in the presence of a glass/indium tin oxide (ITO) top layer at a modest 165 degrees Celsius.

With a layer of aluminum on the other side of the device constructed by the Penn State team, the polymer bands stretched from the top to bottom electrodes and provided a clear path for electrons to flow.

"On paper, block copolymers are excellent candidates for organic solar cells, but no one has been able to get very good photovoltaic performance using block copolymers," Verduzco said. "We didn't give up on the idea of block copolymers because there's really only been a handful of these types of solar cells previously tested. We thought getting good performance using block copolymers was possible if we designed the right materials and fabricated the solar cells under the right conditions."

Mysteries remain, he said. "It's not clear why the copolymer organizes itself perpendicular to the electrodes," he said. "Our hypothesis is that both polymers want to be in contact with the ITO-coated glass. We think that forces this orientation, though we haven't proven it yet."

He said the researchers want to experiment with other block copolymers and learn to control their structures to increase the solar cell's ability to capture photons and turn them into electricity. Once they have achieved higher performance from the cells, the team will look at long-term use.

"We'll focus on performance first, because if we can't get it high enough, there's no reason to address some of the other challenges like stability," Verduzco said. Encapsulating a solar cell to keep air and water from degrading it is easy, he said, but protecting it from ultraviolet degradation over time is hard. "You have to expose it to sunlight. That you can't avoid."

Co-authors of the paper are Rice graduate students Yen-Hao Lin and Kendall Smith; Penn State graduate student Changhe Guo and undergraduate Matthew Witman; Argonne National Laboratory researcher Joseph Strzalka; Lawrence Berkeley National Laboratory postdoctoral researcher Cheng Wang and staff scientist Alexander Hexemer; and Enrique Gomez, an assistant professor in the Penn State Department of Chemical Engineering. Verduzco is an assistant professor of chemical and biomolecular engineering.

The National Science Foundation, the Department of Energy, the Welch Foundation, the Shell Center for Sustainability and the Louis and Peaches Owen Family Foundation supported the research.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728


Follow Rice News and Media Relations via Twitter @RiceUNews

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Verduzco Laboratory:

Best research-cell efficiency chart:

Related News Press

News and information

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Self Assembly

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Discoveries

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Announcements

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Energy

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

Solar cell compound probed under pressure September 25th, 2014

Research partnerships

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Smallest-possible diamonds form ultra-thin nanothread September 25th, 2014

Solar/Photovoltaic

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE