Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Stretchable, transparent graphene-metal nanowire electrode: Eye contact lenses, picture-taking and scanning, possibly, a wearable black box

This is an LED-fitted soft eye contact lens.

Credit: UNIST
This is an LED-fitted soft eye contact lens.

Credit: UNIST

Abstract:
A hybrid transparent and stretchable electrode could open the new way for flexible displays, solar cells, and even electronic devices fitted on a curvature substrate such as soft eye contact lenses, by the UNIST(Ulsan National Institute of Science and Technology) research team.

Stretchable, transparent graphene-metal nanowire electrode: Eye contact lenses, picture-taking and scanning, possibly, a wearable black box

Ulsan, South Korea | Posted on May 30th, 2013

Transparent electrodes are in and of themselves nothing all that new - they have been widely used in things like touch screens, flat-screen TVs, solar cells and light-emitting devices. Currently transparent electrodes are commonly made from a material known as indium tin oxide(ITO). Although it suffices for its job, it's brittle, cracking and losing functionality if flexed. It also degrades over time, and is somewhat expensive due to the limited quantities of indium metal.

As an alternative, the networks of randomly distributed mNWs have been considered as promising candidates for next-generation transparent electrodes, due to their low-cost, high-speed fabrication of transparent electrodes.

However, the number of disadvantage of the mNW networks has limited their integration into commercial devices. They have low breakdown voltage, typically high NW-NW junction resistance, high contact resistance between network and active materials, material instability and poor adhesion to plastic substrates.

UNIST scientists here, combined graphene with silver nanowires to form a thin, transparent and stretchable electrode. Combining graphene and silver nanowires in a hybrid material overcomes weakness of individual material.

Graphene is also well known as good a candidate for transparent electrode because of their unique electrical properties and high mechanical flexibility. However, scalable graphene synthesis methods for commercialization produces lower quality graphene with individual segments called grains which increases the electrical resistance at boundaries between these grains.

Silver nanowires, on the other hand, have high resistance because they are randomly oriented like a jumble of toothpicks facing in different directions. In this random orientation, there are many contact between nanowires, resulting in high resistance due to large junction resistance of nanowires. Due to these drawbacks, neither is good for conducting electricity, but a hybrid structure, combined from two materials, is.

As a result, it presents a high electrical and optical performance with mechanical flexibility and stretchability for flexible electronics. The hybrid Transparent electrode reportedly has a low "sheet resistance" while preserving high transmittance. There's almost no change in its resistance when bent and folded where ITO is bent, its resistance increases significantly. Additionally the hybrid material reportedly has a low "sheet resistance" while preserving electrical and optical properties reliable against thermal oxidation condition

The graphene-mNW hybrid structure developed by the research team, as a new class of such electrodes, may soon find use in a variety of other applications. The research team demonstrated Inorganic light-emitting diode (ILDED) devices fitted on a soft eye contact lens using the transparent, stretchable interconnects of the hybrid electrodes as an application example.

As an in vivo study, this contact lens was worn by a live rabbit eye for five hours and none of abnormal behavior, such as bloodshot eye or the rubbing of eye areas, of the live rabbit had been observed.

Wearing eye contact lenses, picture-taking and scanning, is not a scene on Sci-Fi movie anymore.

Jang-Ung Park, professor of the School of Nano-Bioscience and Chemical Engineering, UNIST, led the effort.

"We believe the hybridization between two-dimensional and one-dimensional nanomaterials presents a promising strategy toward flexible, wearable electronics and implantable biosensor devices, and indicate the substantial promise of future electronics," said Prof. Park.

This work was supported by the National Research Foundation of Korea and the Ministry of Knowledge Economy through the Materials Original Technology Program and has been published (Web) on May 23, 2013 in Nano Letters. (Title: High-Performance, Transparent and Stretchable Electrodes using Graphene-Metal Nanowire Hybrid Structures.)

####

For more information, please click here

Contacts:
Jang-ung Park

82-522-172-533

Copyright © Ulsan National Institute of Science and Technology(UNIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Homepage of Prof. Jang-Ung Park:

The original article will be found at:

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Flexible Electronics

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Sensors

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Energy

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Photonics/Optics/Lasers

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE