Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New gene delivery method: magnetic nanoparticles: New research in The FASEB Journal suggests that with magnetic guidance, specially designed nanoparticles can help deliver genes to injured arteries, using stents as the delivery platform

Abstract:
Stent angioplasty saves lives, but there often are side effects and complications related to the procedure, such as arterial restenosis and thrombosis. In the June 2013 issue of The FASEB Journal, however, scientists report that they have discovered a new nanoparticle gene delivery method that may overcome current limitations of gene therapy vectors and prevent complications associated with the stenting procedure. Specifically, this strategy uses stents as a platform for magnetically targeted gene delivery, where genes are moved to cells at arterial injury locations without causing unwanted side effects to other organs. Additionally, magnetic nanoparticles developed and characterized in the study also protect genes and help them reach their target in active form, which also is one of the key challenges in any gene therapy.

New gene delivery method: magnetic nanoparticles: New research in The FASEB Journal suggests that with magnetic guidance, specially designed nanoparticles can help deliver genes to injured arteries, using stents as the delivery platform

Bethesda, MD | Posted on May 30th, 2013

"This study can help address a number of barriers to translation of experimental gene therapeutic approaches to clinical practice," said Michael Chorny, Ph.D., a researcher involved in the work from the Division of Cardiology at the Abramson Pediatric Research Center at The Children's Hospital of Philadelphia in Pennsylvania. "Bringing gene therapy closer to clinical use is a step toward developing safer and more effective ways for treating cardiovascular disease."

To make this technique possible, Chorny and colleagues used in vitro vascular cells to demonstrate the ability to effectively deliver genes using biocompatible nanoparticles and magnetic force without causing adverse effects. Although effective gene transfer in these cells has been difficult to achieve historically, this study demonstrated that magnetically guided "gene-impregnated" nanoparticles delivered their cargo effectively, especially compared to conventional gene delivery vectors. Next, researchers explored magnetically targeted gene delivery by applying these nanoparticles to stented arteries in rats. The nanoparticle-mediated expression of stent-targeted genes was shown to be greatly enhanced in treated animals when compared to control groups treated with nanoparticles without using the magnetic conditions, or with an equivalent dose of a conventional gene delivery vector. Genes delivered using the magnetically targeted nanoparticles were also expressed at considerably higher levels in the stented arteries compared to other organs and tissues.

"This approach is novel and exciting, and goes to show that investments in basic science across disciplines pay off in time," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "When the first nanoparticles were developed and when the first correctable human disease gene was identified, no one could have ever known that these two advances would come together in a way that might one-day save lives."

####

About Federation of American Societies for Experimental Biology
FASEB is composed of 26 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to its member societies and through collaborative advocacy.

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is among the most cited biology journals worldwide according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

For more information, please click here

Contacts:
Cody Mooneyhan

301-634-7104

Copyright © Federation of American Societies for Experimental Biology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Michael Chorny, Ilia Fishbein, Jillian E. Tengood, Richard F. Adamo, Ivan S. Alferiev, and Robert J. Levy. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. FASEB J June 2013 27:2198-2206; doi:10.1096/fj.12-224659:

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanomedicine

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project