Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > How do cold ions slide

Ions on optical latticeCredits: SISSA
Ions on optical lattice

Credits: SISSA

Abstract:
Things not always run smoothly. It may happen, actually, that when an object slides on another, the advancement may occur through a ‘stop and go' series in the characteristic manner which scientists call "stick-slip", a pervasive phenomenon at every scale, from earthquakes to daily-life objects, up to the "nano" dimension. Davide Mandelli, Andrea Vanossi and Erio Tosatti of the International School for Advanced Studies (SISSA) of Trieste have studied the conditions in which at the nanoscopic level the switch from smooth sliding to stick-slip regime occurs, simulating ‘toy-like' systems of ‘cold ions'.

How do cold ions slide

Trieste, Italy | Posted on May 24th, 2013

"Our studies are based on the research on trapped cold ions. Before we did, such methodology had never been applied to the field of friction", explains Tosatti. "These are experimental studies I call ‘toy-like' because they are models employed to explore reality, in the same way as a Lego little house may be used as the model of a real house. We have simulated such systems and used them in our field of research." Tosatti is the coordinator of the research, which appeared in the scientific journal Physical Review. The study, besides SISSA, also involves the Centro Democritos of Officina dei Materiali CNR-IOM.

More in detail…

The three scientists have simulated the sliding of a one-dimensional ion chain of finite length on a substrate generated by laser beams (an optical lattice).

"The lattice forms a periodic sequence of ‘barriers' and ‘holes', whose depth determines the behavior of the ion chain when advancing on the substrate pulled by an electric field," explains Mandelli, a student at SISSA. When the holes are shallow - technically speaking, when the amplitude of the corrugated potential is small enough - the ion chain can slide in a continuous manner, while when they are deeper the movement of the ions appears more restrained, and thus the stick-slip regime is observed." Another interesting observation" adds Mandelli "regards the role of the chain's inhomogeneity, as a consequence of which some areas get more or less stuck on the substrate. As a consequence, before the sliding process starts, internal ‘adjustments' occur in which few ions move in the direction of the pulling force. Also this phenomenon has been observed at macroscopic scales."

In a 2011 study Tosatti e Vanossi had already employed such model to study static friction. With this work they have extended their observations to the field of dynamics.

"Such studies are important for two reasons", explains Mandelli. "On one side, the stick-slip is a complex phenomenon that occurs at every scale whose dynamics are still little-known. Just try to imagine how important it is to understand it from a geological viewpoint, for instance. On the other, with the development of nanotechnologies also from an application point of view it becomes fundamental to know the details of the interaction mechanics of molecules and atoms."

On the connection between mesoscale and nanoscale friction Tosatti and Vanossi have recently published also a "colloquium" (a series of articles in scientific reviews) in the international journal Reviews of Modern Physics. Such research line carried out at SISSA has been recently awarded with a 5-year Advanced Grant by the European Research Council.

####

For more information, please click here

Contacts:
Federica sgorbissa

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Discoveries

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Announcements

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Photonics/Optics/Lasers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project