Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Weird science: Crystals melt when they're cooled

Itai Cohen lab
A confocal microscopy image of polystyrene particle clusters beginning to form crystals on a substrate. By changing the aspect ratio in the spacings of the underlying lattice, Savage and colleagues showed that it is possible to direct the growth of crystals to be oriented.
Itai Cohen lab

A confocal microscopy image of polystyrene particle clusters beginning to form crystals on a substrate. By changing the aspect ratio in the spacings of the underlying lattice, Savage and colleagues showed that it is possible to direct the growth of crystals to be oriented.

Abstract:
Growing thin films out of nanoparticles in ordered, crystalline sheets, to make anything from microelectronic components to solar cells, would be a boon for materials researchers, but the physics is tricky because particles of that size don't form crystals the way individual atoms do.

Weird science: Crystals melt when they're cooled

Ithaca, NY | Posted on May 22nd, 2013

Using bigger particles as models, physicists have predicted some unusual properties of nanoparticle crystal growth - in particular, that some particles, due to their sizes and the attractive forces between them, grow crystals that melt when they're cooled.

A study led by John Savage, former postdoctoral associate in the lab of Itai Cohen, associate professor of physics, showed that colloidal crystals, which form out of particles suspended in fluid, can exhibit this odd phenomenon of cold melt. The study was published online May 20 in Proceedings of the National Academy of Sciences.

Usually people grow crystals of different materials, like the common semiconductor gallium arsenide, as layered sheets of strongly bonded atoms. Colloidal crystals are different; they form when colloidal particles suspended in a fluid self-assemble into arrays.

To get the micron-sized colloids to form crystals, the researchers introduced nanometer-sized particles into the fluid, which compete with the larger colloids for space and end up pushing the colloids together, but only when the distance between them is smaller than the nanoparticles. Because this attraction results from the thermal energy of the nanoparticle motions, the bonds between the colloidal particles are also relatively weak.

These short-ranged, weak attractions between particles, as opposed to strong atomic bonds, exhibit some surprising behaviors. For example, Cohen said, in solution the particles are only able to feel each other when they are less than a nanoparticle apart. But if the colloidal particles are resting on a substrate of particles, which sets the spacing between them, then the range of the interaction can increase dramatically.

They found that the substrate particles keep the colloids loosely bound long enough that they can jostle and interact with their in-plane neighbors, but only once in a while. Effectively, it looks like the particles are forming bonds with their in-plane neighbors, even though they are only doing so sometimes.

"This allows in-plane neighbors to form loosely bound crystals whose inter-particle spacing is much larger than what you would expect was possible, given the short-ranged nature of the interaction," Cohen said.

When they lowered the temperature so that the bonds between particles were stronger than their thermal energy, the particles jostled less. Consequently, they sat deeper in the well formed by the substrate particles and interacted with their in-plane neighbors less frequently.

The result, Cohen said, is that the colloids were no longer able to form in-plane bonds that can hold the crystal together, so particles can diffuse away and the crystal dissolves or melts. "It's this weird effect," Cohen said, "where the crystal melts upon cooling."

These results could help materials researchers tailor the growth of crystals composed of nanoparticles - where similar effects arise - for new applications in electronics or energy materials.

The study, "Entropy-driven crystal formation on highly strained substrates," was supported by King Abdullah University of Science and Technology and the National Science Foundation.

####

For more information, please click here

Contacts:
Cornell Chronicle
Anne Ju
607- 255-9735


Media Contact
Syl Kacapyr
607-255-7701

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Physics

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Thin films

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NRL develops new low-defect method to nitrogen dope graphene resulting in tunable bandstructure June 6th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic