Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Weird science: Crystals melt when they're cooled

Itai Cohen lab
A confocal microscopy image of polystyrene particle clusters beginning to form crystals on a substrate. By changing the aspect ratio in the spacings of the underlying lattice, Savage and colleagues showed that it is possible to direct the growth of crystals to be oriented.
Itai Cohen lab

A confocal microscopy image of polystyrene particle clusters beginning to form crystals on a substrate. By changing the aspect ratio in the spacings of the underlying lattice, Savage and colleagues showed that it is possible to direct the growth of crystals to be oriented.

Abstract:
Growing thin films out of nanoparticles in ordered, crystalline sheets, to make anything from microelectronic components to solar cells, would be a boon for materials researchers, but the physics is tricky because particles of that size don't form crystals the way individual atoms do.

Weird science: Crystals melt when they're cooled

Ithaca, NY | Posted on May 22nd, 2013

Using bigger particles as models, physicists have predicted some unusual properties of nanoparticle crystal growth - in particular, that some particles, due to their sizes and the attractive forces between them, grow crystals that melt when they're cooled.

A study led by John Savage, former postdoctoral associate in the lab of Itai Cohen, associate professor of physics, showed that colloidal crystals, which form out of particles suspended in fluid, can exhibit this odd phenomenon of cold melt. The study was published online May 20 in Proceedings of the National Academy of Sciences.

Usually people grow crystals of different materials, like the common semiconductor gallium arsenide, as layered sheets of strongly bonded atoms. Colloidal crystals are different; they form when colloidal particles suspended in a fluid self-assemble into arrays.

To get the micron-sized colloids to form crystals, the researchers introduced nanometer-sized particles into the fluid, which compete with the larger colloids for space and end up pushing the colloids together, but only when the distance between them is smaller than the nanoparticles. Because this attraction results from the thermal energy of the nanoparticle motions, the bonds between the colloidal particles are also relatively weak.

These short-ranged, weak attractions between particles, as opposed to strong atomic bonds, exhibit some surprising behaviors. For example, Cohen said, in solution the particles are only able to feel each other when they are less than a nanoparticle apart. But if the colloidal particles are resting on a substrate of particles, which sets the spacing between them, then the range of the interaction can increase dramatically.

They found that the substrate particles keep the colloids loosely bound long enough that they can jostle and interact with their in-plane neighbors, but only once in a while. Effectively, it looks like the particles are forming bonds with their in-plane neighbors, even though they are only doing so sometimes.

"This allows in-plane neighbors to form loosely bound crystals whose inter-particle spacing is much larger than what you would expect was possible, given the short-ranged nature of the interaction," Cohen said.

When they lowered the temperature so that the bonds between particles were stronger than their thermal energy, the particles jostled less. Consequently, they sat deeper in the well formed by the substrate particles and interacted with their in-plane neighbors less frequently.

The result, Cohen said, is that the colloids were no longer able to form in-plane bonds that can hold the crystal together, so particles can diffuse away and the crystal dissolves or melts. "It's this weird effect," Cohen said, "where the crystal melts upon cooling."

These results could help materials researchers tailor the growth of crystals composed of nanoparticles - where similar effects arise - for new applications in electronics or energy materials.

The study, "Entropy-driven crystal formation on highly strained substrates," was supported by King Abdullah University of Science and Technology and the National Science Foundation.

####

For more information, please click here

Contacts:
Cornell Chronicle
Anne Ju
607- 255-9735


Media Contact
Syl Kacapyr
607-255-7701

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Physics

Doubling down on Schrödinger's cat May 27th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

How light is detected affects the atom that emits it: An experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection May 15th, 2016

Thin films

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Discoveries

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Materials/Metamaterials

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic