Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Innovation could bring flexible solar cells, transistors, displays

Electron microscope images show a new material for transparent electrodes that might find uses in solar cells, flexible displays for computers and consumer electronics, and future "optoelectronic" circuits for sensors and information processing. The electrodes are made of silver nanowires covered with a material called graphene. At bottom is a model depicting the "co-percolating" network of graphene and silver nanowires.Purdue University image/Birck Nanotechnology Center
Electron microscope images show a new material for transparent electrodes that might find uses in solar cells, flexible displays for computers and consumer electronics, and future "optoelectronic" circuits for sensors and information processing. The electrodes are made of silver nanowires covered with a material called graphene. At bottom is a model depicting the "co-percolating" network of graphene and silver nanowires.

Purdue University image/Birck Nanotechnology Center

Abstract:
Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes

Ruiyi Chen 1,4, Suprem R. Das 2,3, Changwook Jeong 1, Mohammad Ryyan Khan 1, David B. Janes 1,3,*, Muhammad A. Alam 1,*

1School of Electrical and Computer Engineering, Purdue University,

2Department of Physics, Purdue University

3Birck Nanotechnology Center, Purdue University

4 Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China

Email: David B. Janes ( ), Muhammad A. Alam ( )
Transparent conducting electrodes (TCEs) require high transparency and low sheet resistance for applications in photovoltaics, photodetectors, flat panel displays, touch screen devices and imagers. Indium tin oxide (ITO), or other transparent conductive oxides, have typically been used, and provide a baseline sheet resistance (RS) vs. transparency (T) relationship. However, ITO is relatively expensive (due to limited abundance of Indium), brittle, unstable, and inflexible; moreover, ITO transparency drops rapidly for wavelengths above 1,000 nm. Motivated by a need for transparent conductors with comparable (or better) R Sat a given T, as well as flexible structures, several alternative material systems have been investigated. Single-layer graphene (SLG) or few-layer graphene provide sufficiently high transparency (≈97% per layer) to be a potential replacement for ITO. However, large-area synthesis approaches, including chemical vapor deposition (CVD), typically yield films with relatively high sheet resistance due to small grain sizes and high-resistance grain boundaries (HGBs). In this paper, we report a hybrid structure employing a CVD SLG film and a network of silver nanowires (AgNWs): RS as low as 22 Ω/□ (stabilized to 13 Ω/□ after 4 months) have been observed at high transparency (88% at λ = 550 nm) in hybrid structures employing relatively low-cost commercial graphene with a starting RSof 770 Ω/□. This sheet resistance is superior to typical reported values for ITO, comparable to the best reported TCEs employing graphene and/or random nanowire networks, and the film properties exhibit impressive stability under mechanical pressure, mechanical bending and over time. The design is inspired by the theory of a co-percolating network where conduction bottlenecks of a 2D film (e.g., SLG, MoS2) are circumvented by a 1D network (e.g., AgNWs, CNTs) and vice versa. The development of these high-performance hybrid structures provides a route towards robust, scalable and low-cost approaches for realizing high-performance TCE.

Innovation could bring flexible solar cells, transistors, displays

West Lafayette, IN | Posted on May 22nd, 2013

Researchers have created a new type of transparent electrode that might find uses in solar cells, flexible displays for computers and consumer electronics and future "optoelectronic" circuits for sensors and information processing.

The electrode is made of silver nanowires covered with a material called graphene, an extremely thin layer of carbon. The hybrid material shows promise as a possible replacement for indium tin oxide, or ITO, used in transparent electrodes for touch-screen monitors, cell-phone displays and flat-screen televisions. Industry is seeking alternatives to ITO because of drawbacks: It is relatively expensive due to limited abundance of indium, and it is inflexible and degrades over time, becoming brittle and hindering performance.

"If you try to bend ITO it cracks and then stops functioning properly," said Purdue University doctoral student Suprem Das.

The hybrid material could represent a step toward innovations, including flexible solar cells and color monitors, flexible "heads-up" displays in car windshields and information displays on eyeglasses and visors.

"The key innovation is a material that is transparent, yet electrically conductive and flexible," said David Janes, a professor of electrical and computer engineering.

Research findings were detailed in a paper appearing online in April in the journal Advanced Functional Materials. The paper is available online at http://onlinelibrary.wiley.com/doi/10.1002/adfm.201300124/full. It was authored by Das; visiting student Ruiyi Chen; graduate students Changwook Jeong and Mohammad Ryyan Khan; Janes and Muhammad A. Alam, a Purdue professor of electrical and computer engineering.

The hybrid concept was proposed in earlier publications by Purdue researchers, including a 2011 paper in the journal Nano Letters. The concept represents a general approach that could apply to many other materials, said Alam, who co-authored the Nano Letters paper.

"This is a beautiful illustration of how theory enables a fundamental new way to engineer material at the nanoscale and tailor its properties," he said.

Such hybrid structures could enable researchers to overcome the "electron-transport bottleneck" of extremely thin films, referred to as two-dimensional materials.

Combining graphene and silver nanowires in a hybrid material overcomes drawbacks of each material individually: the graphene and nanowires conduct electricity with too much resistance to be practical for transparent electrodes. Sheets of graphene are made of individual segments called grains, and resistance increases at the boundaries between these grains. Silver nanowires, on the other hand, have high resistance because they are randomly oriented like a jumble of toothpicks facing in different directions. This random orientation makes for poor contact between nanowires, resulting in high resistance.

"So neither is good for conducting electricity, but when you combine them in a hybrid structure, they are," Janes said.

The graphene is draped over the silver nanowires.

"It's like putting a sheet of cellophane over a bowl of noodles," Janes said. "The graphene wraps around the silver nanowires and stretches around them."

Findings show the material has a low "sheet resistance," or the electrical resistance in very thin layers of material, which is measured in units called "squares." At 22 ohms per square, it is five times better than ITO, which has a sheet resistance of 100 ohms per square.

Moreover, the hybrid structure was found to have little resistance change when bent, whereas ITO shows dramatic increases in resistance when bent.

"The generality of the theoretical concept underlying this experimental demonstration - namely 'percolation-doping' -- suggests that it is likely to apply to a broad range of other 2-D nanocrystaline material, including graphene," Alam said.

A patent application has been filed by Purdue's Office of Technology Commercialization.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
David Janes
765-494-9263


Suprem Das


Muhammad A. Alam
765-494-5988

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene/ Graphite

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Wrinkles give heat a jolt in pillared graphene : Rice University researchers test 3-D carbon nanostructures' thermal transport abilities November 2nd, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Flexible Electronics

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity November 1st, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

Sensors

The stacked color sensor: True colors meet minimization November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Patents/IP/Tech Transfer/Licensing

Picosun’s ALD nanolaminates improve lifetime and reliability of electronic circuit boards October 24th, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Nanoparticles limit damage in spinal cord injury: Injection after an injury reduces inflammation and scarring September 6th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project