Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Whirlpools on the Nanoscale Could Multiply Magnetic Memory: At the Advanced Light Source, Berkeley Lab scientists join an international team to control spin orientation in magnetic nanodisks

The electron spins in a magnetic vortex all point in parallel, either clockwise or counterclockwise. Spins in the crowded core of the vortex must point out of the plane, either up or down. The four orientations of circularity and polarity could form the cells of multibit magnetic storage and processing systems.
The electron spins in a magnetic vortex all point in parallel, either clockwise or counterclockwise. Spins in the crowded core of the vortex must point out of the plane, either up or down. The four orientations of circularity and polarity could form the cells of multibit magnetic storage and processing systems.

Abstract:
"We spent 15 percent of home energy on gadgets in 2009, and we're buying more gadgets all the time," says Peter Fischer of the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). Fischer lets you know right away that while it's scientific curiosity that inspires his research at the Lab's Advanced Light Source (ALS), he intends it to help solve pressing problems.

Whirlpools on the Nanoscale Could Multiply Magnetic Memory: At the Advanced Light Source, Berkeley Lab scientists join an international team to control spin orientation in magnetic nanodisks

Berkeley, CA | Posted on May 22nd, 2013

"What we're working on now could make these gadgets perform hundreds of times better and also be a hundred times more energy efficient," says Fischer, a staff scientist in the Materials Sciences Division. As a principal investigator at the Center for X-Ray Optics, he leads ALS beamline 6.1.2, where he specializes in studies of magnetism.

Fischer recently provided critical support to a team led by Vojtĕch Uhlíř of the Brno University of Technology in the Czech Republic and the Center for Magnetic Recording Research at the University of California, San Diego. Researchers from both institutions and from Berkeley Lab used the unique capabilities of beamline 6.1.2 to advance a new concept in magnetic memory.

"Magnetic memory is at the heart of most electronic devices," says Fischer, "and from the scientist's point of view, magnetism is about controlling electron spin."

Magnetic memories store bits of information in discrete units whose electron spins all line up in parallel, pointing one way or the opposite to signify a one or a zero. What Fischer and his colleagues propose is multibit storage in which each unit has four states instead of two and can store twice the information.

The key is magnetic vortices - whirlpools of magnetic field - confined to tiny metal disks a few billionths of a meter (nanometers) in diameter. The electron spins are seeking the lowest possible energy; spins that point in opposing directions, antiparallel, cost energy. Thus the electrons line up with all their spins pointing in a circle, either clockwise or counterclockwise around the disk.

In the core of the vortex, however, where the circles get smaller and smaller and neighboring spins would inevitably align antiparallel, they tend to tilt out of the plane, pointing either up or down.

"So each disk has four bits instead of two - left or right circularity and up or down polarity of the core - but you must be able to control the orientation of each independently," says Fischer.

Up, down, and around - taking control

Applying a strong, steady external magnetic field can reverse core polarity, but practical devices can't tolerate strong fields, and they need faster switches. Previous researchers at the ALS had found that with weak oscillating magnetic fields in the plane of the nanodisk they could quickly nudge the core out of its central position and get the same result.

"Instead of a static field, you wiggle it," Fischer explains. As the core is pushed away from the center of the disk, successive magnetic waves - changes in spin orientation - move the core faster and faster until its polarity flips to the opposite orientation.

The team used ALS beamline 6.1.2 to demonstrate, for the first time, that similar methods can control the circularity of the magnetic vortices.

In this case, the "wiggle" drives the core right off the edge of the disk. Once it's expelled, the vortex collapses and reforms, with spins pointing in the opposite direction: clockwise instead of counterclockwise, or vice versa.

Beamline 6.1.2 specializes in soft x-ray transmission microscopy of magnetic states, which allowed the researchers to make direct images of how the strength and duration of the trains of electric and magnetic pulses affected the circularity of the vortex. They found that control depends on the disk's geometry.

The disks were all tapered, with diagonal slices off their top surfaces that served to accelerate the core, once it started moving. But thickness and diameter were the important factors: the smaller the disk, the better.

"Thick" disks (30 nanometers) over a thousand nanometers in diameter were sluggards, taking more than three nanoseconds to switch circularity. But disks only 20 nanometers thick and 100 nanometers across could switch orientation in less than half a nanosecond.

Much remains to be done before the four-value multibit becomes practical, Polarity can be controlled, and circularity can be controlled, but so far they can't be controlled at the same time. Plans for doing this are in the works.

"This is the scientific basis for possible applications to come," says Fischer. "We are already looking at ways to control spin with temperature and voltage, at how to completely decouple spin from charge currents, and even at ways to couple chains of nanodisks together to build logic devices - not just for memory, but for computation."

In Fischer's opinion, the ALS's soft x-ray microscopes tools are in the pole position for the race in magnetism research. "No method besides x-ray microscopy can provide similarly comprehensive information, both to identify the magnetic materials and to image the fastest dynamics of magnetic states on the nanoscale. The instruments we have are unique and serve the whole vortex community, world-wide."

DOE's Office of Science supports the ALS and, with the European Regional Development Fund and the Grant Agency of the Czech Republic, supported this research.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

The Advanced Light Source is a third-generation synchrotron light source producing light in the x-ray region of the spectrum that is a billion times brighter than the sun. A DOE national user facility, the ALS attracts scientists from around the world and supports its users in doing outstanding science in a safe environment. For more information visit www-als.lbl.gov/.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.

For more information, please click here

Contacts:
Paul Preuss

510-486-6249

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Dynamic switching of the spin circulation in tapered magnetic nanodisks,” by Vojtĕch Uhlíř, Michal Urbánek, Lukáš Hladík, Jiří Spousta, Mi-Young Im, Peter Fischer, Nasim Eibagi, Jimmy Kan, Eric E. Fullerton, and Tomáš Šikola, appears in advance online publication of Nature Nanotechnology at:

For more about Fischer’s research on magnetic vortices, visit:

Visit for more about the Center for X-Ray Optics:

Related News Press

Laboratories

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Imaging

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Spintronics

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Chip Technology

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Memory Technology

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Discoveries

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Tools

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Research partnerships

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE