Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Atomic-Scale Investigations Solve Key Puzzle of LED Efficiency: MIT and Brookhaven Lab scientists use electron microscopy imaging techniques to settle a solid-state controversy and raise new experimental possibilities

These images of the InGaN samples—produced by CFN's low-voltage scanning transmission electron microscope—reveal a lack of structural changes over time. After 16 minutes of scanning, no damage or decomposition is visible, and the higher magnification (c) exhibits none of the clustering previously theorized to be central to LED efficiency.
These images of the InGaN samples—produced by CFN's low-voltage scanning transmission electron microscope—reveal a lack of structural changes over time. After 16 minutes of scanning, no damage or decomposition is visible, and the higher magnification (c) exhibits none of the clustering previously theorized to be central to LED efficiency.

Abstract:
From the high-resolution glow of flat screen televisions to light bulbs that last for years, light-emitting diodes (LEDs) continue to transform technology. The celebrated efficiency and versatility of LEDs-and other solid-state technologies including laser diodes and solar photovoltaics-make them increasingly popular. Their full potential, however, remains untapped, in part because the semiconductor alloys that make these devices work continue to puzzle scientists.

Atomic-Scale Investigations Solve Key Puzzle of LED Efficiency: MIT and Brookhaven Lab scientists use electron microscopy imaging techniques to settle a solid-state controversy and raise new experimental possibilities

Upton, NY | Posted on May 22nd, 2013

A contentious controversy surrounds the high intensity of one leading LED semiconductor-indium gallium nitride (InGaN)-with experts split on whether or not indium-rich clusters within the material provide the LED's remarkable efficiency. Now, researchers from the Massachusetts Institute of Technology (MIT) and the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have demonstrated definitively that clustering is not the source. The results-published online May 16 in Applied Physics Letters-advance fundamental understanding of LED technology and open new research pathways.

"This discovery helps solve a significant mystery in the field of LED research and demonstrates breakthrough experimental techniques that can advance other sensitive and cutting-edge electronics," said Silvija Gradecak, the Thomas Lord Associate Professor of Materials Science and Engineering at MIT and a coauthor on the study. "The work brings us closer to truly mastering solid-state technologies that could supply light and energy with unprecedented efficiency."

Building a Better Bulb

Incandescent lights-the classic bulbs that use glowing wires of tungsten or other metals-convert only about five percent of their energy into visible light, with the rest lost as heat. Fluorescent lights push that efficiency up to about 20 percent, still wasting 80 percent of the electricity needed to keep homes and businesses bright. In both of these instances, light is only the byproduct of heat-generating reactions rather than the principal effect, making the technology inherently inefficient.

"Solid-state lights convert electric current directly into photons," said Eric Stach, leader of the Electron Microscopy Group at Brookhaven Lab's Center for Functional Nanomaterials (CFN) and a co-author on the study. "LED bulbs use semiconductors to generate light in a process called electroluminescence. The efficiency of this process could, in theory, be nearly perfect, but the experimental realization has not reached those levels. That disconnect helped motivate this study."

For this study, the scientists looked at the LED compound InGaN (pronounced in-gan), which is particularly promising for practical applications. InGaN alloys contain dislocations-structural imperfections that could inhibit electricity flow and light production-but somehow the alloy performs exceptionally well. To understand the light-emitting reactions, physicists needed to understand what was happening on the atomic scale. After researchers started to investigate, however, not everyone reached the same conclusions.

Controversial Clusters

"Years ago, a team of researchers used electron microscopes to examine InGaN samples, and they identified a surprising phenomenon-the material appeared to be spontaneously decomposing and forming these isolated indium-rich clusters," Stach said. "This behavior could explain the efficient light emission, as the clusters might help electrons avoid the structural problems in the InGaN. But then things became really interesting when another group proposed that the electron microscope itself caused that clustering decomposition. We had a real divide in the semiconductor field."

Rather than using light to examine materials, electron microscopes bombard samples with finely tuned beams of electrons and detect their interactions when they pass through a sample to reveal atomic structures. To achieve high enough resolution to examine the InGaN alloys, the electron microscopes used in the older experiments needed high-voltage beams. The controversy revolved around whether or not the experiment itself produced the clusters, rather than discovering the mechanism behind efficient light emission.

Improved Imaging

"The state-of-the-art instruments available at Brookhaven Lab's CFN changed the way we could test these promising materials," Gradecak said. "The CFN's aberration-corrected scanning transmission electron microscope (STEM) opened a new and non-destructive window into the LED samples. For the first time, we could get Ångstrom-level details-that's one tenth of one nanometer-without the risk of the device affecting the sample."

The researchers combined the leading STEM techniques with high-resolution electron energy loss spectroscopy (EELS), which measured the energy lost by electrons as they passed through the sample. Post-doctoral researchers Kamal Baloch of MIT-the lead author of the study-and Aaron Johnston-Peck of CFN actually applied these imaging techniques to the same samples that first launched the controversy over clustering, helping further settle the issue.

"We found that the indium-rich clusters do not actually exist in these samples, even though they remain efficient light emitters," Baloch said. "While clustering may still occur in other samples, which may be prepared in different ways, the important point is that we've established a foolproof method for investigating InGaN materials. We can use these non-destructive imaging techniques to explore the fundamental relationship between cluster formation and light emission to help unlock the secrets of this amazing alloy."

Beyond the advanced imaging instruments, researchers used the expertise of Brookhaven Lab physicist Kim Kisslinger, who specializes in nanoscale sample preparation. The InGaN samples were reduced to a thickness of just 20 nanometers, an essential step in priming the materials for STEM and EELS experimentation. The samples were also painstakingly cleaned and polished to eliminate artifacts that might impact image resolution.

The research was supported by the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy's Office of Science. The work at Brookhaven Lab's Center for Functional Nanomaterials was also supported by DOE's Office of Science, with additional work carried out at the MIT Center for Materials Science Engineering.

"The Center for Excitonics gave us the freedom and funding to look at this fundamental question, knowing that these explorations will ultimately push the limits of LED technology," Gradecak said. "This was a strong collaboration between MIT and Brookhaven's CFN, demonstrating the concentration of expertise and instrumentation that really pushes science and technology forward."

The Center for Functional Nanomaterials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the U.S. Department of Energy, Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. More information about the DOE NSRCs: science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

SIDEBAR: Beyond Lighting - InGaN in Action

The InGaN alloy is of extreme interest to scientists and inventors in the semiconductor and solid-state lighting fields. It has the ability to emit light over a wide range of wavelengths-manifesting as different colors-simply by changing the relative amounts of indium and gallium in the material. Scientists at the Center for Excitonics are exploring the fundamentals of light emission in this material, as well as pushing the frontiers of the exciting field of excitonics, where light and electrons interact both to store energy and mediate its transfer in a wide range of materials. In the case of InGaN alloys, this deeper understanding of excitonics can impact many real-world devices, including:

Blue and green light-emitting diodes (LEDs)
Ultra-high-efficiency solar photovoltaics
Green and blue diode lasers (e.g. laser pointers, Blu-ray writers)
High-power, high-voltage electronics
Phased radar arrays
Ultraviolet LEDs for medical and industrial applications

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Justin Eure
(631) 344-2347

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific Paper: Revisiting the "In-clustering" question in InGaN through the use of aberration-corrected electron microscopy below the knock-on threshold:

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Laboratories

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Imaging

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Tools

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Energy

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Solar/Photovoltaic

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project