Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Single-Cell Transfection Tool Enables Added Control for Biological Studies: McCormick researchers develop method of delivering molecules into targeted cells

Transfection of the dextran Alexa Fluor 488 dye into a targeted HeLa cell using Nanofountain Probe Electroporation. Reprinted with permission from Nano Letters. Copyright 2013 American Chemical Society.
Transfection of the dextran Alexa Fluor 488 dye into a targeted HeLa cell using Nanofountain Probe Electroporation. Reprinted with permission from Nano Letters.

Copyright 2013 American Chemical Society.

Abstract:
Northwestern University researchers have developed a new method for delivering molecules into single, targeted cells through temporary holes in the cell surface. The technique could find applications in drug delivery, cell therapy, and related biological fields.

Single-Cell Transfection Tool Enables Added Control for Biological Studies: McCormick researchers develop method of delivering molecules into targeted cells

Evanston, IL | Posted on May 22nd, 2013

Bulk electroporation a technique used to deliver molecules into cells through reversible nanopores in the cell membrane that are caused by exposing them to electric pulses is an increasingly popular method of cell transfection. (Cell transfection is the introduction of molecules, such as nucleic acids or proteins, into a cell to change its properties.)

However, because bulk electroporation applies electric pulses to a bulk cell solution, it results in heterogeneous cell populations and often low cell viability. To solve these problems, Northwestern University researchers have developed a novel tool for single-cell transfection.

The new method, called nanofountain probe electroporation (NFP-E), allows researchers to deliver molecules into targeted cells through temporary nanopores in the cell membrane created by a localized electric field applied to a small portion of the cell. The method enables researchers to control dosage by varying the duration of the electric pulses, which provides unprecedented control of cell transfection.

"This is really exciting," said Horacio Espinosa, James and Nancy Farley Professor of Manufacturing and Entrepreneurship at Northwestern's McCormick School of Engineering and one of the paper's authors. "The ability to precisely deliver molecules into single cells is needed for biotechnology researchers to advance the state-of-the-art in therapeutics, diagnostics, and drug delivery toward the promise of personalized medicine."

A paper describing the research, "Nanofountain Probe Electroporation (NFP-E) of Single Cells," was published May 7 in the journal Nano Letters.

NFP-E is based on nanofountain probe (NFP) technology developed in Espinosa's lab. The NFP-E chip consists of an array of microfabricated cantilever probes with integrated microfluidic channels. The probe has previously been used for high-speed nanopatterning of proteins and nanoparticles for drug delivery studies.

The new single-cell transfection application couples the probe with an electrode and fluid control system that can be easily connected to a micromanipulator or atomic force microscope for position control. This integrated system allows the entire transfection process and post-transfection cell response to be monitored by an optical microscope.

The NFP-E system is being developed for commercialization by iNfinitesimal LLC, a Northwestern spin-off company founded by Espinosa, and is expected to be available in late 2013.

The technique is proving to be extremely robust and multi-functional. Researchers have used the NFP-E chip to transfect HeLa cells with polysaccharides, proteins, DNA hairpins, and plasmid DNA with single-cell selectivity, high transfection efficiency (up to 95%), qualitative dosage control, and very high viability (up to 92%).

In addition to Espinosa, authors of the research paper include Wonmo Kang, Fazel Yavari, Majid Minary-Jolandan, Juan P. Giraldo-Vela, Asmahan Safi, Rebecca McNaughton, and Victor Parpoil. The research was supported by the National Science Foundation and the National Institutes of Health.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper:

Related News Press

News and information

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Discoveries

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Announcements

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Nanobiotechnology

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project