Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Study Led by George Washington University Professor Provides Better Understanding of Water’s Freezing Behavior at Nanoscale

Abstract:
The results of a new study led by George Washington University Professor Tianshu Li provide direct computational evidence that nucleation of ice in small droplets is strongly size-dependent, an important conclusion in understanding water's behavior at the nanoscale. The formation of ice at the nanoscale is a challenging, basic scientific research question whose answer also has important implications for climate research and other fields.

Study Led by George Washington University Professor Provides Better Understanding of Water’s Freezing Behavior at Nanoscale

Washington, DC | Posted on May 21st, 2013

The crystallization of ice from supercooled water is generally initiated by a process called nucleation. Because of the speed and size of nucleation—it occurs within nanoseconds and nanometers—probing it by experiment or simulation is a major challenge.

By using an advanced simulation method, Dr. Li and his collaborators, Davide Donadio of Germany's Max Planck Institute for Polymer Research, and Giulia Galli, a professor of chemistry and physics at the University of California, Davis, were able to demonstrate that nucleation of ice is substantially suppressed in nano-sized water droplets. Their paper, "Ice nucleation at the nanoscale probes no man's land of water," was published today in the journal Nature Communications.

"A current challenge for scientists is to unveil water's behaviors below -35 degrees Celsius and above -123 degrees Celsius, a temperature range that chemists call ‘no man's land,' " said Dr. Li, a professor of civil and environmental engineering at the George Washington University School of Engineering and Applied Science. "Fast ice crystallization can hardly be avoided at such low temperatures, so maintaining water in a liquid state is a major experimental challenge."

Since the frequency of ice nucleation scales with the volume of water, one of the strategies for overcoming this kinetic barrier is to reduce the volume of water. However, this raises the question of whether water at the nanoscale can still be regarded as equivalent to bulk water, and if not, where that boundary would be.

The team's results answer this question. By showing that the ice nucleation rate at the nanoscale can be several orders of magnitude smaller than that of bulk water, they demonstrate that water at such a small scale can no longer be considered bulk water.

"We also predict where this boundary would reside at various temperatures," Dr. Li said. The boundary refers to the size of the droplet where the difference vanishes. The team's findings will help with the interpretation of molecular beam experiments and set the guidelines for experiments that probe the ‘no man's land' of water.

The results are also of importance in atmospheric science, as they may improve the climate model of the formation of ice clouds in upper troposphere, which effectively scatter incoming solar radiation and prevent earth from becoming overheated by the sun. The results have important implications in climate control research, too. One of the current debates is whether the formation of ice occurs near the surface or within the micrometer-sized droplets suspended in clouds. If it is the former, effective engineering approaches may be able to be taken to tune the surface tension of water so that the ice crystallization rate can be controlled.

"Our results, indeed, support the hypothesis of surface crystallization of ice in microscopic water droplets," Dr. Li said. "Obtaining the direct evidence is our next step."

####

About George Washington University
GW’s School of Engineering and Applied Science prepares engineers and applied scientists to address society’s technological challenges by offering outstanding undergraduate, graduate and professional educational programs, and by providing innovative, fundamental and applied research activities. The school has five academic departments, 11 research centers, 90 faculty and more than 2,500 undergraduate and graduate students. Core areas of academic excellence include biomedical engineering, cybersecurity, high performance computing, nanotechnologies, robotics and transportation safety engineering.

For more information, please click here

Contacts:
Joanne Welsh

202-994-2050

Kurtis Hiatt
202-994-1849

Copyright © George Washington University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Chemistry

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

The Körber Foundation congratulates Stefan Hell on winning the 2014 Nobel Prize October 10th, 2014

Physics

Solid nanoparticles can deform like a liquid: Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets October 12th, 2014

Unconventional photoconduction in an atomically thin semiconductor: New mechanism of photoconduction could lead to next-generation excitonic devices October 9th, 2014

Nanoparticles Break the Symmetry of Light October 6th, 2014

Discoveries

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Water

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Malvern Instruments & Aurora Water conference presentation illustrates value and cost-saving potential of on-line zeta potential in water treatment: 2014 RMSAWWA/RMWEA Joint Annual Conference, Albuquerque, New Mexico, USA September 7th – 10th September 3rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE