Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rice unveils method for tailoring optical processors: Arranging nanoparticles in geometric patterns allows for control of light with light

By arranging optically tuned gold discs in a closely spaced pattern, Rice University scientists created intense electrical fields and enhanced the nonlinear optical properties of the system. Here a computer model displays the plasmonic interactions that give rise to the intense fields.
CREDIT: Yu Zhang/Rice University
By arranging optically tuned gold discs in a closely spaced pattern, Rice University scientists created intense electrical fields and enhanced the nonlinear optical properties of the system. Here a computer model displays the plasmonic interactions that give rise to the intense fields.

CREDIT: Yu Zhang/Rice University

Abstract:
Rice University scientists have unveiled a robust new method for arranging metal nanoparticles in geometric patterns that can act as optical processors that transform incoming light signals into output of a different color. The breakthrough by a team of theoretical and applied physicists and engineers at Rice's Laboratory for Nanophotonics (LANP) is described this week in the Proceedings of the National Academy of Sciences.

Rice unveils method for tailoring optical processors: Arranging nanoparticles in geometric patterns allows for control of light with light

Houston, TX | Posted on May 21st, 2013

Rice's team used the method to create an optical device in which incoming light could be directly controlled with light via a process known as "four-wave mixing." Four-wave mixing has been widely studied, but Rice's disc-patterning method is the first that can produce materials that are tailored to perform four-wave mixing with a wide range of colored inputs and outputs.

"Versatility is one of the advantages of this process," said study co-author Naomi Halas, director of LANP and Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and a professor of biomedical engineering, chemistry, physics and astronomy. "It allows us to mix colors in a very general way. That means not only can we send in beams of two different colors and get out a third color, but we can fine-tune the arrangements to create devices that are tailored to accept or produce a broad spectrum of colors."

The information processing that takes place inside today's computers, smartphones and tablets is electronic. Each of the billions of transistors in a computer chip uses electrical inputs to act upon and modify the electrical signals passing through it. Processing information with light instead of electricity could allow for computers that are both faster and more energy-efficient, but building an optical computer is complicated by the quantum rules that light obeys.

"In most circumstances, one beam of light won't interact with another," said LANP theoretical physicist Peter Nordlander, a co-author of the new study. "For instance, if you shine a flashlight at a wall and you cross that beam with the beam from a second flashlight, it won't matter. The light that comes out of the first flashlight will pass through, independent of the light from the second.

"This changes if the light is traveling in a 'nonlinear medium,'" he said. "The electromagnetic properties of a nonlinear medium are such that the light from one beam will interact with another. So, if you shine the two flashlights through a nonlinear medium, the intensity of the beam from the first flashlight will be reduced proportionally to the intensity of the second beam."

The patterns of metal discs LANP scientists created for the PNAS study are a type of nonlinear media. The team used electron-beam lithography to etch puck-shaped gold discs that were placed on a transparent surface for optical testing. The diameter of each disc was about one-thousandth the width of a human hair. Each was designed to harvest the energy from a particular frequency of light; by arranging a dozen of the discs in a closely spaced pattern, the team was able to enhance the nonlinear properties of the system by creating intense electrical fields.

"Our system exploits a particular plasmonic effect called a Fano resonance to boost the efficiency of the relatively weak nonlinear effect that underlies four-wave mixing," Nordlander said. "The result is a boost in the intensity of the third color of light that the device produces."

Graduate student and co-author Yu-Rong Zhen calculated the precise arrangement of 12 discs that would be required to produce two coherent Fano resonances in a single device, and graduate student and lead co-author Yu Zhang created the device that produced the four-wave mixing -- the first such material ever created.

"The device Zhang created for four-wave mixing is the most efficient yet produced for that purpose, but the value of this research goes beyond the design for this particular device," said Halas, who was recently named a member of the National Academy of Sciences for her pioneering research in nanophotonics. "The methods used to create this device can be applied to the production of a wide range of nonlinear media, each with tailored optical properties."

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the PNAS paper is available at:

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Optical Computing

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

New NIST metamaterial gives light a one-way ticket July 2nd, 2014

Don't blink! NIST studies why quantum dots suffer from 'fluorescence intermittency' May 22nd, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Photonics/Optics/Lasers

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Printing/Lithography/Inkjet/Inks

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE