Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Microneedle-Delivered Nanoparticles Boost Antitumor Vaccines

Abstract:
In the quest to develop anti-cancer vaccines that would stimulate the body to destroy tumors and keep them from recurring, researchers continually run into the same problem - the immune-stimulating proteins, known as antigens, are not interacting effectively with the key immune system cells that trigger long-lasting immune responses. Now, using a novel administration system and polymer nanoparticles, a team of investigators led by Adrien Kissenpfennig of Queen's University Belfast has shown that they can deliver anticancer antigens to dendritic cells and trigger an effective immune system response against melanoma tumors.

Microneedle-Delivered Nanoparticles Boost Antitumor Vaccines

Bethesda, MD | Posted on May 20th, 2013

There were two keys to the Irish team's success, which they reported in the journal ACS Nano. First, Dr. Kissenpfennig and his colleagues used an array of dissolving microneedles to deliver antigens into the dermis, the second layer of tissue that forms the skin. In this case, the researchers used a polymeric, water-soluble microneedle array that was just long enough to penetrate the outer layer of skin but not so long as to hit sensory nerves in the dermis.

Once the array penetrates the skin, the biocompatible microneedles break off and remain embedded in the dermis. There, they slowly dissolve and release the second key component - biocompatible polymer nanoparticles loaded with a protein found on the surface of a particular type of melanoma tumor. For this study, the investigators used the protein ovalbumin and tested their system's ability to attack so-called B16 melanoma cells that express ovalbumin on their surface.

Many studies have shown that antigens released slowly in the dermis trigger a strong immune response. In particular, this route of vaccination appears to promote the development of CD8-positive cytotoxic T cells at higher levels that is achieved using standard intramuscular injection of antigens. The reason for this enhanced response is that the dermis is rich in dendritic cells, which play an essential role in processing foreign proteins and "presenting them" to the immune system.

The results of this study follow that trend, as the nanoparticle-encapsulated antigen triggered the production of specific CD8-positive T cells for ovalbumin. Moreover, this response was indeed mediated by dendritic cells that took up the slowly released ovalbumin protein. In fact, the investigators showed that their microneedle-nanoparticle system was able to maintain high levels of ovalbumin-processing dendritic cells for at least seven days that in turn were able to evoke significantly increased production of ovalbumin-specific CD8-positive T cells.

Given these results, Dr. Kissenpfennig's team conducted experiments to determine if this immune response would have any effect on ovalbumin-expressing melanoma tumors. Three weeks after immunizing mice one time using microneedles loaded with ovalbumin-containing nanoparticles, the researchers injected ovalbumin-expressing B16 melanoma cells into the inoculated animals. At the end of the16-day test period, none of the immunized animals had any tumors, while tumors grew significantly in animals injected with empty nanoparticles.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View full paper - "Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses."

Related News Press

News and information

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Nanomedicine

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Discoveries

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Announcements

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE