Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Penn engineers' nanoantennas improve infrared sensing

A diagram showing how the researchers' optomechanical infrared-detecting structure works.
A diagram showing how the researchers' optomechanical infrared-detecting structure works.

Abstract:
A team of University of Pennsylvania engineers has used a pattern of nanoantennas to develop a new way of turning infrared light into mechanical action, opening the door to more sensitive infrared cameras and more compact chemical-analysis techniques.

Penn engineers' nanoantennas improve infrared sensing

Philadelphia, PA | Posted on May 20th, 2013

The research was conducted by assistant professor Ertugrul Cubukcu and postdoctoral researcher Fei Yi, along with graduate students Hai Zhu and Jason C. Reed, all of the Department of Material Science and Engineering in Penn's School of Engineering and Applied Science.

It was published in the journal Nano Letters.

Detecting light in the mid-infrared range is important for applications like night-vision cameras, but it can also be used to do spectroscopy, a technique that involves scattering light over a substance to infer its chemical composition. Existing infrared detectors use cryogenically cooled semiconductors, or thermal detectors known as microbolometers, in which changes in electrical resistance can be correlated to temperatures. These techniques have their own advantages, but both need expensive, bulky equipment to be sensitive enough for spectroscopy applications.

"We set out to make an optomechanical thermal infrared detector," Cubukcu said. "Rather than changes in resistance, our detector works by connecting mechanical motion to changes in temperature."

The advantage to this approach is that it could reduce the footprint of an infrared sensing device to something that would fit on a disposable silicon chip. The researchers fabricated such a device in their study.

At the core of the device is a nanoscale structure — about a tenth of a millimeter wide and five times as long — made of a layer of gold bonded to a layer of silicon nitride. The researchers chose these materials because of their different thermal expansion coefficients, a parameter that determines how much a material will expand when heated. Because metals will naturally convert some energy from infrared light into heat, researchers can connect the amount the material expands to the amount of infrared light hitting it.

"A single layer would expand laterally, but our two layers are constrained because they're attached to one another," Cubukcu said. "The only way they can expand is in the third dimension. In this case, that means bending toward the gold side, since gold has the higher thermal expansion coefficient and will expand more."

To measure this movement, the researchers used a fiber interferometer. A fiber optic cable pointed upward at this system bounces light off the underside of the silicon nitride layer, enabling the researchers to determine how far the structure has bent upwards.

"We can tell how far the bottom layer has moved based on this reflected light," Cubukcu said. "We can even see displacements that are thousands of times smaller than a hydrogen atom."

Other researchers have developed optomechanical infrared sensors based on this principle, but their sensitivities have been comparatively low. The Penn team's device is an improvement in this regard due to the inclusion of "slot" nanoantennas, cavities that are etched into the gold layer at intervals that correspond to wavelengths of mid-infrared light.

"The infrared radiation is concentrated into the slots, so you don't need any additional material to make these antennas," Cubukcu said. "We take the same exact platform and, by patterning it with these nanoscale antennas, the conversion efficiency of the detector improves 10 times."

The inclusion of nanoantennas provides the device with an additional advantage: the ability to tailor which type of light it is sensitive to by etching a different pattern of slots on the surface.

"Other techniques can only work at the maximum absorption determined by the material itself," Yi said. "Our antennas can be engineered to absorb at any wavelength."

While only a proof-of-concept at this stage, future research will demonstrate the device's capabilities as a low-cost way of analyzing individual proteins and gas molecules.

The research was supported by the National Science Foundation, Penn's Materials Research Science and Engineering Center, Penn's Nano/Bio Interface Center and the Penn Regional Nanotechnology Facility.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Chemistry

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

Imaging

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Lab-on-a-chip

POSTECH researchers develop a control algorithm for more accurate lab-on-a-chip devices April 6th, 2016

Artificial molecules April 3rd, 2016

New microwave imaging approach opens a nanoscale view on processes in liquids: Technique can explore technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes March 16th, 2016

Nanoworld 'snow blowers' carve straight channels in semiconductor surfaces: NIST, IBM researchers report important addition to toolkit of 'self-assembly' methods eyed for making useful devices December 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Chip Technology

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Discoveries

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Announcements

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Tools

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic