Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Penn engineers' nanoantennas improve infrared sensing

A diagram showing how the researchers' optomechanical infrared-detecting structure works.
A diagram showing how the researchers' optomechanical infrared-detecting structure works.

Abstract:
A team of University of Pennsylvania engineers has used a pattern of nanoantennas to develop a new way of turning infrared light into mechanical action, opening the door to more sensitive infrared cameras and more compact chemical-analysis techniques.

Penn engineers' nanoantennas improve infrared sensing

Philadelphia, PA | Posted on May 20th, 2013

The research was conducted by assistant professor Ertugrul Cubukcu and postdoctoral researcher Fei Yi, along with graduate students Hai Zhu and Jason C. Reed, all of the Department of Material Science and Engineering in Penn's School of Engineering and Applied Science.

It was published in the journal Nano Letters.

Detecting light in the mid-infrared range is important for applications like night-vision cameras, but it can also be used to do spectroscopy, a technique that involves scattering light over a substance to infer its chemical composition. Existing infrared detectors use cryogenically cooled semiconductors, or thermal detectors known as microbolometers, in which changes in electrical resistance can be correlated to temperatures. These techniques have their own advantages, but both need expensive, bulky equipment to be sensitive enough for spectroscopy applications.

"We set out to make an optomechanical thermal infrared detector," Cubukcu said. "Rather than changes in resistance, our detector works by connecting mechanical motion to changes in temperature."

The advantage to this approach is that it could reduce the footprint of an infrared sensing device to something that would fit on a disposable silicon chip. The researchers fabricated such a device in their study.

At the core of the device is a nanoscale structure — about a tenth of a millimeter wide and five times as long — made of a layer of gold bonded to a layer of silicon nitride. The researchers chose these materials because of their different thermal expansion coefficients, a parameter that determines how much a material will expand when heated. Because metals will naturally convert some energy from infrared light into heat, researchers can connect the amount the material expands to the amount of infrared light hitting it.

"A single layer would expand laterally, but our two layers are constrained because they're attached to one another," Cubukcu said. "The only way they can expand is in the third dimension. In this case, that means bending toward the gold side, since gold has the higher thermal expansion coefficient and will expand more."

To measure this movement, the researchers used a fiber interferometer. A fiber optic cable pointed upward at this system bounces light off the underside of the silicon nitride layer, enabling the researchers to determine how far the structure has bent upwards.

"We can tell how far the bottom layer has moved based on this reflected light," Cubukcu said. "We can even see displacements that are thousands of times smaller than a hydrogen atom."

Other researchers have developed optomechanical infrared sensors based on this principle, but their sensitivities have been comparatively low. The Penn team's device is an improvement in this regard due to the inclusion of "slot" nanoantennas, cavities that are etched into the gold layer at intervals that correspond to wavelengths of mid-infrared light.

"The infrared radiation is concentrated into the slots, so you don't need any additional material to make these antennas," Cubukcu said. "We take the same exact platform and, by patterning it with these nanoscale antennas, the conversion efficiency of the detector improves 10 times."

The inclusion of nanoantennas provides the device with an additional advantage: the ability to tailor which type of light it is sensitive to by etching a different pattern of slots on the surface.

"Other techniques can only work at the maximum absorption determined by the material itself," Yi said. "Our antennas can be engineered to absorb at any wavelength."

While only a proof-of-concept at this stage, future research will demonstrate the device's capabilities as a low-cost way of analyzing individual proteins and gas molecules.

The research was supported by the National Science Foundation, Penn's Materials Research Science and Engineering Center, Penn's Nano/Bio Interface Center and the Penn Regional Nanotechnology Facility.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Imaging

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Lab-on-a-chip

Bionic liver micro-organs explain off-target toxicity of acetaminophen (Tylenol): Israeli-German partnership aims to replace animal experiments with advanced liver-on-chip devices August 17th, 2015

New optical chip lights up the race for quantum computer August 14th, 2015

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology July 7th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic