Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Perform Fastest Measurements Ever Made of Ion Channel Proteins

Photograph of integrated amplifiers. The well supporting the membrane and channel is noted in the figure.
Photograph of integrated amplifiers. The well supporting the membrane and channel is noted in the figure.

Abstract:
The miniaturization of electronics continues to create unprecedented capabilities in computer and communications applications, enabling handheld wireless devices with tremendous computing performance operating on battery power. This same miniaturization of electronic systems is also creating new opportunities in biotechnology and biophysics.

Researchers Perform Fastest Measurements Ever Made of Ion Channel Proteins

New York, NY | Posted on May 20th, 2013

A team of researchers at Columbia Engineering has used miniaturized electronics to measure the activity of individual ion-channel proteins with temporal resolution as fine as one microsecond, producing the fastest recordings of single ion channels ever performed. Ion channels are biomolecules that allow charged atoms to flow in and out of cells, and they are an important work-horse in cell signaling, sensing, and energetics. They are also being explored for nanopore sequencing applications. As the "transistors" of living systems, they are the target of many drugs, and the ability to perform such fast measurements of these proteins will lead to new understanding of their functions.

The researchers have designed a custom integrated circuit to perform these measurements, in which an artificial cell membrane and ion channel are attached directly to the surface of the amplifier chip. The results are described in a paper published online May 1, 2013, in Nano Letters.

"Scientists have been measuring single ion channels using large rack-mount electronic systems for the last 30 years," says Jacob Rosenstein, the lead author on the paper. Rosenstein was a PhD student in electrical engineering at the School at the time this work was done, and is now an assistant professor at Brown University. "By designing a custom microelectronic amplifier and tightly integrating the ion channel directly onto the amplifier chip surface, we are able to reduce stray capacitances that get in the way of making fast measurements."

"This work builds on other efforts in my laboratory to study the properties of individual molecules using custom electronics designed for this purpose," says Ken Shepard, professor of electrical engineering at the School and Rosenstein's adviser. The Shepard group continues to find ways to speed up these single-molecule measurements. "In some cases," he adds, "we may be able to speed things up to be a million times faster than current techniques."

This work was funded by the National Institutes of Health and the National Science Foundation.

-by Holly Evarts

####

For more information, please click here

Contacts:
Holly Evarts

347-453-7408

Copyright © Columbia University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Kalam: versatility personified August 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universitšt Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Nanomedicine

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Discoveries

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Nanobiotechnology

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project