Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Beautiful "flowers" self-assemble in a beaker: Elaborate nanostructures blossom from a chemical reaction perfected at Harvard

These false-color SEM images reveal microscopic flower structures created by manipulating a chemical gradient to control crystalline self-assembly.Image courtesy of Wim L. Noorduin
These false-color SEM images reveal microscopic flower structures created by manipulating a chemical gradient to control crystalline self-assembly.

Image courtesy of Wim L. Noorduin

Abstract:
"Spring is like a perhaps hand," wrote the poet E. E. Cummings: "carefully / moving a perhaps / fraction of flower here placing / an inch of air there... / without breaking anything."

With the hand of nature trained on a beaker of chemical fluid, the most delicate flower structures have been formed in a Harvard laboratory—and not at the scale of inches, but microns.

Beautiful "flowers" self-assemble in a beaker: Elaborate nanostructures blossom from a chemical reaction perfected at Harvard

Cambridge, MA | Posted on May 17th, 2013



Home
About SEAS
Academics
Faculty & Research
News & Events
Calendars & Colloquia
Videos
Publications
K-12 & Community Programs
For the Media
Press Releases
Beautiful "flowers" self-assemble in a beaker
Administration

Quick Links

Library
Directory
Map & Directions
Faculty & Staff Intranet

Beautiful "flowers" self-assemble in a beaker

May 16, 2013

Elaborate nanostructures blossom from a chemical reaction perfected at Harvard

CONTACT: Caroline Perry, (617) 496-1351

Flower collage

These false-color SEM images reveal microscopic flower structures created by manipulating a chemical gradient to control crystalline self-assembly. (Image courtesy of Wim L. Noorduin.)

Cambridge, Mass. - May 16, 2013 - "Spring is like a perhaps hand," wrote the poet E. E. Cummings: "carefully / moving a perhaps / fraction of flower here placing / an inch of air there... / without breaking anything."

With the hand of nature trained on a beaker of chemical fluid, the most delicate flower structures have been formed in a Harvard laboratory—and not at the scale of inches, but microns.

These minuscule sculptures, curved and delicate, don't resemble the cubic or jagged forms normally associated with crystals, though that's what they are. Rather, fields of carnations and marigolds seem to bloom from the surface of a submerged glass slide, assembling themselves a molecule at a time.

By simply manipulating chemical gradients in a beaker of fluid, Wim L. Noorduin, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS) and lead author of a paper appearing on the cover of the May 17 issue of Science, has found that he can control the growth behavior of these crystals to create precisely tailored structures.

"For at least 200 years, people have been intrigued by how complex shapes could have evolved in nature. This work helps to demonstrate what's possible just through environmental, chemical changes," says Noorduin.

The precipitation of the crystals depends on a reaction of compounds that are diffusing through a liquid solution. The crystals grow toward or away from certain chemical gradients as the pH of the reaction shifts back and forth. The conditions of the reaction dictate whether the structure resembles broad, radiating leaves, a thin stem, or a rosette of petals.

It is not unusual for chemical gradients to influence growth in nature; for example, delicately curved marine shells form from calcium carbonate under water, and gradients of signaling molecules in a human embryo help set up the plan for the body. Similarly, Harvard biologist Howard Berg has shown that bacteria living in colonies can sense and react to plumes of chemicals from one another, which causes them to grow, as a colony, into intricate geometric patterns.

Replicating this type of effect in the laboratory was a matter of identifying a suitable chemical reaction and testing, again and again, how variables like the pH, temperature, and exposure to air might affect the nanoscale structures.

The project fits right in with the work of Joanna Aizenberg, an expert in biologically inspired materials science, biomineralization, and self-assembly, and principal investigator for this research.

Aizenberg is the Amy Smith Berylson Professor of Materials Science at Harvard SEAS, Professor of Chemistry and Chemical Biology in the Harvard Department of Chemistry and Chemical Biology, and a Core Faculty Member of the Wyss Institute for Biologically Inspired Engineering at Harvard.

Her recent work has included the invention of an extremely slippery material, inspired by the pitcher plant, and the discovery of how bacteria use their flagella to cling to the surfaces of medical implants.

"Our approach is to study biological systems, to think what they can do that we can't, and then to use these approaches to optimize existing technologies or create new ones," says Aizenberg. "Our vision really is to build as organisms do."

To create the flower structures, Noorduin and his colleagues dissolve barium chloride (a salt) and sodium silicate (also known as waterglass) into a beaker of water. Carbon dioxide from air naturally dissolves in the water, setting off a reaction which precipitates barium carbonate crystals. As a byproduct, it also lowers the pH of the solution immediately surrounding the crystals, which then triggers a reaction with the dissolved waterglass. This second reaction adds a layer of silica to the growing structures, uses up the acid from the solution, and allows the formation of barium carbonate crystals to continue.

"You can really collaborate with the self-assembly process," says Noorduin. "The precipitation happens spontaneously, but if you want to change something then you can just manipulate the conditions of the reaction and sculpt the forms while they're growing."

Increasing the concentration of carbon dioxide, for instance, helps to create 'broad-leafed' structures. Reversing the pH gradient at the right moment can create curved, ruffled structures.

Noorduin and his colleagues have grown the crystals on glass slides and metal blades; they've even grown a field of flowers in front of President Lincoln's seat on a one-cent coin.

"When you look through the electron microscope, it really feels a bit like you're diving in the ocean, seeing huge fields of coral and sponges," describes Noorduin. "Sometimes I forget to take images because it's so nice to explore."

In addition to her roles at Harvard SEAS, the Department of Chemistry and Chemical Biology, and the Wyss Institute, Joanna Aizenberg is Director of the Kavli Institute for Bionano Science and Technology at Harvard and Director of the Science Program at the Radcliffe Institute for Advanced Study.

Coauthors included Alison Grinthal, a research scientist at Harvard SEAS, and L. Mahadevan, who is the Lola England de Valpine Professor of Applied Mathematics at SEAS, Professor of Organismic and Evolutionary Biology and of Physics, and a Core Faculty Member at the Wyss Institute.

The project was supported by National Science Foundation grants to the Harvard Materials Research Science and Engineering Center (DMR-0820484) and the Harvard Center for Nanoscale Systems (ECS-0335765); and by the Netherlands Organization for Scientific Research.

####

For more information, please click here

Contacts:
Caroline Perry
(617) 496-1351

Copyright © Harvard's School of Engineering and Applied Sciences (SEAS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Imaging

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Vaccine with virus-like nanoparticles effective treatment for RSV, study finds August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Self Assembly

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Discoveries

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Announcements

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanoparticles Give Antibacterial Properties to Machine-Woven Carpets August 4th, 2015

Tools

University of Puerto Rico announces August 11th as the launch date for their NASA mission to look for life in space – XEI reports August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project