Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Moth-Inspired Nanostructures Take the Color Out of Thin Films

The nanostructures limit the amount of light reflected at the thin film interface.
The nanostructures limit the amount of light reflected at the thin film interface.

Abstract:
"Antireflection Effects at Nanostructured Material Interfaces and the Suppression of Thin-Film Interference"

Authors: Qiaoyin Yang, Xu A. Zhang, Abhijeet Bagal, Wei Guo and Chih-Hao Chang, North Carolina State University

Published: May 16, Nanotechnology

DOI: 10.1088/0957-4484/24/23/235202

Abstract: Thin-film interference is a well-known effect, and it is commonly observed in the colored appearance of many natural phenomena. Caused by the interference of light reflections from the interfaces of thin material layers, such interference effects can lead to wavelength and angle-selective behavior in thin-film devices. In this work, we describe the use of interfacial nanostructures to eliminate interference effects in thin films. Using the same principle inspired by the moth-eye structures, this approach creates an effective medium where the index is gradually varying between the neighboring materials. We present the fabrication process for such nanostructures at a polymer-silicon interface, and experimentally demonstrate its effectiveness in suppressing thin-film interference. The principle demonstrated in this work can lead to enhanced efficiency and reduce wavelength/angle sensitivity in multilayer optoelectronic devices.

Moth-Inspired Nanostructures Take the Color Out of Thin Films

Raleigh, NC | Posted on May 17th, 2013

Inspired by the structure of moth eyes, researchers at North Carolina State University have developed nanostructures that limit reflection at the interfaces where two thin films meet, suppressing the "thin-film interference" phenomenon commonly observed in nature. This can potentially improve the efficiency of thin-film solar cells and other optoelectronic devices.

Thin-film interference occurs when a thin film of one substance lies on top of a second substance. For example, thin-film interference is what causes the rainbow sheen we see when there is gasoline in a puddle of water.

Gasoline is transparent, but some light is still reflected off of its surface. Similarly, some of the light that passes through the gasoline is reflected off the underlying surface of the water where the two substances interface, or meet. Because the light reflected off the water has to pass back through the gasoline, it takes a slightly different optical path than the light that was reflected off the surface of the gasoline. The mismatch of these optical path "lengths" is what creates the rainbow sheen - and that phenomenon is thin-film interference.

Thin-film interference is a problem for devices that use multiple layers of thin films, like thin-film solar cells, because it means that some wavelengths of light are being reflected - or "lost" - at every film interface. The more thin films a device has, the more interfaces there are, and the more light is lost.

"We were inspired by the surface structure of a moth's eye, which has evolved so that it doesn't reflect light," says Dr. Chih-Hao Chang, an assistant professor of mechanical and aerospace engineering at NC State and co-author of a paper on the research. "By mimicking that concept, we've developed a nanostructure that significantly minimizes thin-film interference."

The nanostructures are built into thin films that will have a second thin film placed on top of them. The nanostructures are an extension of the thin film beneath them, and resemble a tightly-packed forest of thin cones. These nanostructures are "interfacial," penetrating into whatever thin film is layered on top of them - and limiting the amount of light reflected at that interface. Chang's team found that the an interface featuring the interfacial nanostructures reflects 100 times less light than an interface of thin films without the nanostructures.

"Our next steps are to design a solar device that takes advantage of this concept and to determine how we can scale it up for commercial applications," Chang says.

The paper, "Antireflection Effects at Nanostructured Material Interfaces and the Suppression of Thin-Film Interference," was published online May 15 in the journal Nanotechnology. Lead author of the paper is former NC State graduate student Qiaoyin Yang. Co-authors are Chang and NC State Ph.D. students Xu A. Zhang, Abhijeet Bagal and Wei Guo. The research was supported by a NASA Early Career Faculty Award and the National Science Foundation's ASSIST Engineering Research Center at NC State.

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Chih-Hao Chang
919.513.7968

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download the paper, “Antireflection Effects at Nanostructured Material Interfaces and the Suppression of Thin-Film Interference.”:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Thin films

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project