Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists capture first direct proof of Hofstadter butterfly effect

UCF team Masa Ishigami and Jyoti Katoch work to capture the illusive Hofstadter's butterfly effect.

Credit: UCF
UCF team Masa Ishigami and Jyoti Katoch work to capture the illusive Hofstadter's butterfly effect.

Credit: UCF

Abstract:
A team of researchers from several universities - including UCF -has observed a rare quantum physics effect that produces a repeating butterfly-shaped energy spectrum in a magnetic field, confirming the longstanding prediction of the quantum fractal energy structure called Hofstadter's butterfly.

Scientists capture first direct proof of Hofstadter butterfly effect

Orlando, FL | Posted on May 17th, 2013

This discovery by the team paves the way for engineering new types of extraordinary nanoscale materials that can be used to develop smaller, lighter and faster electronics, including sensors, cell phones, tablets and laptops.

First predicted by American physicist Douglas Hofstadter in 1976, the butterfly pattern emerges when electrons are confined to a two-dimensional plane and subjected to both a periodic potential energy and a strong magnetic field. The Hofstadter butterfly is a fractal pattern—meaning that it contains shapes that repeat on smaller and smaller size scales. Fractals are common in systems such as fluid mechanics, but rare in the quantum mechanical world. The Hofstadter butterfly is one of the first quantum fractals theoretically discovered in physics but, until now, there has been no direct experimental proof of this spectrum.

Columbia University led the study and also involved scientists from the City University of New York, Tohoku University and the National Institute for Materials Science in Japan. Columbia prepared the sample and the UCF team measured the regular recurrence of the high-fidelity periodic pattern, engineered by inducing nanoscale ripples on graphene, a carbon material. The measured recurrence served as the essential proof that the measured spectrum was indeed the Hofstadter butterfly. The image that captured the evidence was taken in UCF Assistant Professor Masa Ishigami's laboratory.

The study is published in today's advance online publication of Nature www.nature.com/nature/journal/vaop/ncurrent/full/nature12186.html

Jyoti Katoch, Ishigami's graduate student, used a non-contact atomic force high-resolution microscope to image the ripples, which have the height of only 0.2 angstroms (twenty trillionth of a meter), to confirm that the observed Hofstadter butterfly spectrum indeed matched the theoretical prediction.

"The arrangement of individual atoms, even just one atom can drastically alter properties of nanoscale materials. That is the basis for nanotechnology," Ishigami said. "Atomic structures must be resolved to understand the properties of nanoscale materials. What we do here at UCF is to explain why nanoscale materials behave so different by resolving their atomic structures. Only when we understand the origin of the extraordinary properties of nanoscale materials, we can propel nanoscience and technology forward. What Jyoti has done here is to image how graphene is rippled to explain the observed Hofstadter spectrum."

UCF's laboratory utilizes a novel, the state-of-the-art microscopy technique to simultaneously determine the atomic structure and electronic properties of nanoscale materials such as graphene.

Katoch has been working with Ishigami since 2008, when Ishigami joined UCF. Katoch helped build the laboratory and developed the atomic-resolution capability critical to capturing the picture proof for this study.

Ishigami has a Ph.D. in physics from the University of California at Berkeley and a bachelor's degree in physics from the Massachusetts Institute of Technology. He has won multiple awards, including the Intelligence Community postdoctoral fellowship and the Hertz graduate fellowship, and has published more than 30 papers in journals including Science.

The College of Sciences, the Nanoscience technology center, and the office of research and commercialization (through a Presidential Initiative to fund major research equipment) supported the purchase and development of the atomic resolution microscope in the Ishigami lab. This research effort was supported by the National Science Foundation under its Faculty Early Career Development Program. (Grant No. 0955625).

####

About University of Central Florida
50 Years of Achievement: The University of Central Florida, the nation's second-largest university with nearly 60,000 students, is celebrating its 50th anniversary in 2013. UCF has grown in size, quality, diversity and reputation, and today the university offers more than 200 degree programs at its main campus in Orlando and more than a dozen other locations. Known as America's leading partnership university, UCF is an economic engine attracting and supporting industries vital to the region's success now and into the future.

For more information, please click here

Contacts:
Zenaida Gonzalez Kotala

407-823-6120

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Imaging

The stacked color sensor: True colors meet minimization November 16th, 2017

Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs November 8th, 2017

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Quorum reports on how cryo prep techniques for SEM are being applied in the Laboratory of Food Technology & Engineering at the University of Ghent, Belgium November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Physics

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Discoveries

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Announcements

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Tools

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Nanometrics Board of Directors Names Pierre-Yves Lesaicherre President and CEO November 14th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

Quantum nanoscience

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project