Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists capture first direct proof of Hofstadter butterfly effect

UCF team Masa Ishigami and Jyoti Katoch work to capture the illusive Hofstadter's butterfly effect.

Credit: UCF
UCF team Masa Ishigami and Jyoti Katoch work to capture the illusive Hofstadter's butterfly effect.

Credit: UCF

Abstract:
A team of researchers from several universities - including UCF -has observed a rare quantum physics effect that produces a repeating butterfly-shaped energy spectrum in a magnetic field, confirming the longstanding prediction of the quantum fractal energy structure called Hofstadter's butterfly.

Scientists capture first direct proof of Hofstadter butterfly effect

Orlando, FL | Posted on May 17th, 2013

This discovery by the team paves the way for engineering new types of extraordinary nanoscale materials that can be used to develop smaller, lighter and faster electronics, including sensors, cell phones, tablets and laptops.

First predicted by American physicist Douglas Hofstadter in 1976, the butterfly pattern emerges when electrons are confined to a two-dimensional plane and subjected to both a periodic potential energy and a strong magnetic field. The Hofstadter butterfly is a fractal pattern—meaning that it contains shapes that repeat on smaller and smaller size scales. Fractals are common in systems such as fluid mechanics, but rare in the quantum mechanical world. The Hofstadter butterfly is one of the first quantum fractals theoretically discovered in physics but, until now, there has been no direct experimental proof of this spectrum.

Columbia University led the study and also involved scientists from the City University of New York, Tohoku University and the National Institute for Materials Science in Japan. Columbia prepared the sample and the UCF team measured the regular recurrence of the high-fidelity periodic pattern, engineered by inducing nanoscale ripples on graphene, a carbon material. The measured recurrence served as the essential proof that the measured spectrum was indeed the Hofstadter butterfly. The image that captured the evidence was taken in UCF Assistant Professor Masa Ishigami's laboratory.

The study is published in today's advance online publication of Nature www.nature.com/nature/journal/vaop/ncurrent/full/nature12186.html

Jyoti Katoch, Ishigami's graduate student, used a non-contact atomic force high-resolution microscope to image the ripples, which have the height of only 0.2 angstroms (twenty trillionth of a meter), to confirm that the observed Hofstadter butterfly spectrum indeed matched the theoretical prediction.

"The arrangement of individual atoms, even just one atom can drastically alter properties of nanoscale materials. That is the basis for nanotechnology," Ishigami said. "Atomic structures must be resolved to understand the properties of nanoscale materials. What we do here at UCF is to explain why nanoscale materials behave so different by resolving their atomic structures. Only when we understand the origin of the extraordinary properties of nanoscale materials, we can propel nanoscience and technology forward. What Jyoti has done here is to image how graphene is rippled to explain the observed Hofstadter spectrum."

UCF's laboratory utilizes a novel, the state-of-the-art microscopy technique to simultaneously determine the atomic structure and electronic properties of nanoscale materials such as graphene.

Katoch has been working with Ishigami since 2008, when Ishigami joined UCF. Katoch helped build the laboratory and developed the atomic-resolution capability critical to capturing the picture proof for this study.

Ishigami has a Ph.D. in physics from the University of California at Berkeley and a bachelor's degree in physics from the Massachusetts Institute of Technology. He has won multiple awards, including the Intelligence Community postdoctoral fellowship and the Hertz graduate fellowship, and has published more than 30 papers in journals including Science.

The College of Sciences, the Nanoscience technology center, and the office of research and commercialization (through a Presidential Initiative to fund major research equipment) supported the purchase and development of the atomic resolution microscope in the Ishigami lab. This research effort was supported by the National Science Foundation under its Faculty Early Career Development Program. (Grant No. 0955625).

####

About University of Central Florida
50 Years of Achievement: The University of Central Florida, the nation's second-largest university with nearly 60,000 students, is celebrating its 50th anniversary in 2013. UCF has grown in size, quality, diversity and reputation, and today the university offers more than 200 degree programs at its main campus in Orlando and more than a dozen other locations. Known as America's leading partnership university, UCF is an economic engine attracting and supporting industries vital to the region's success now and into the future.

For more information, please click here

Contacts:
Zenaida Gonzalez Kotala

407-823-6120

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Imaging

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Physics

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Discoveries

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Tools

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Quantum nanoscience

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project