Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Physicists discover a new kind of friction: Friction in the nano-world

A polymer chain tied to the tip of an atomic force microscopeImage: B. Balzer/TUM
A polymer chain tied to the tip of an atomic force microscope

Image: B. Balzer/TUM

Abstract:
Whether in vehicle transmissions, hip replacements, or tiny sensors for triggering airbags: The respective components must slide against each other with minimum friction to prevent loss of energy and material wear. Investigating the friction behavior of nanosystems, scientists from the Technische Universitaet Muenchen (TUM) have discovered a previously unknown type of friction that sheds new light on some previously unexplainable phenomena.

Physicists discover a new kind of friction: Friction in the nano-world

Munich, Germany | Posted on May 16th, 2013

Friction is an omnipresent but often annoying physical phänomenon: It causes wear and energy loss in machines as well as in our joints. In search of low-friction components for ever smaller components, a team of physicists led by the professors Thorsten Hugel and Alexander Holleitner now discovered a previously unknown type of friction that they call "desorption stick."

The researchers examined how and why single polymer molecules in various solvents slide over or stick to certain surfaces. Their goal was to understand the basic laws of physics at the molecular scale in order to develop targeted anti-friction surfaces and suitable lubricants.

For their studies the scientists attached the end of a polymer molecule to the nanometer-fine tip of a highly sensitive atomic force microscope (AFM). While they pulled the polymer molecule over test surfaces, the AFM measured the resulting forces, from which the researchers could directly deduce the behavior of the polymer coil.

New friction mechanism discovered

Besides the two expected friction mechanisms such as sticking and sliding the researchers detected a third one for certain combinations of polymer, solvent and surface.

"Although the polymer sticks to the surface, the polymer strand can be pulled from its coiled conformation into the surrounding solution without significant force to be exerted," experimental physicist Thorsten Hugel describes this behavior. "The cause is probably a very low internal friction within the polymer coil."

The key is the solvent

Surprisingly, desorption stick depends neither on the speed of movement nor on the support surface or adhesive strength of the polymer. Instead, the chemical nature of the surface and the quality of the solvent are decisive. For example, hydrophobic polystyrene exhibits pure sliding behavior when dissolved in chloroform. In water, however, it shows desorption stick.

"The understanding gained by our measurement of single-molecule friction opens up new ways to minimize friction," says Alexander Holleitner. "In the future, with targeted preparation of polymers, new surfaces could be developed specifically for the nano- and micrometer range."

The work was supported by the German Research Foundation (DFG) and the Cluster of Excellence Nanosystems Initiative Munich (NIM).

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Prof. Dr. Thorsten Hugel

Technische Universitaet Muenchen

Department of Physics / IMETUM

Boltzmannstr. 11, 85747 Garching, Germany
Tel.: +49 89 289 12884

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Sensors

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Non-Enzyme Nanosensors Quickly Measure Blood Sugar August 12th, 2014

Discoveries

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Materials/Metamaterials

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Automotive/Transportation

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

A protecting umbrella against oxygen: Toward fuel cells built from renewable and abundant components - Scientists from Bochum und Mülheim report in NATURE Chemistry August 4th, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE