Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Pitt Chemists Demonstrate Nanoscale Alloys So Bright They Could Have Potential Medical Applications: “Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too.”

Abstract:
Alloys like bronze and steel have been transformational for centuries, yielding top-of-the-line machines necessary for industry. As scientists move toward nanotechnology, however, the focus has shifted toward creating alloys at the nanometer scale—producing materials with properties unlike their predecessors.

Pitt Chemists Demonstrate Nanoscale Alloys So Bright They Could Have Potential Medical Applications: “Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too.”

Pittsburgh, PA | Posted on May 15th, 2013

Now, research at the University of Pittsburgh demonstrates that nanometer-scale alloys possess the ability to emit light so bright they could have potential applications in medicine. The findings have been published in the Journal of the American Chemical Society.

"We demonstrate alloys that are some of the brightest, near-infrared-light-emitting species known to date. They are 100 times brighter than what's being used now," said Jill Millstone, principal investigator of the study and assistant professor of chemistry in Pitt's Kenneth P. Dietrich School of Arts and Sciences. "Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too."

In the paper, Millstone presents alloys with drastically different properties than before—including near-infrared (NIR) light emission—depending on their size, shape, and surface chemistry. NIR is an important region of the light spectrum and is integral to technology found in science and medical settings, said Millstone. She uses a laser pointer as an example.

"If you put your finger over a red laser [which is close to the NIR light region of the spectrum], you'll see the red light shine through. However, if you do the same with a green laser [light in the visible region of the spectrum], your finger will completely block it," said Millstone. "This example shows how the body can absorb visible light well but doesn't absorb red light as well. That means that using NIR emitters to visualize cells and, ultimately parts of the body, is promising for minimally invasive diagnostics."

In addition, Millstone's demonstration is unique in that she was able to show—for the first time—a continuously tunable composition for nanoparticle alloys; this means the ratio of materials can be altered based on need. In traditional metallurgical studies, materials such as steels can be highly tailored toward the application, say, for an airplane wing versus a cooking pot. However, alloys at the nanoscale follow different rules, says Millstone. Because the nanoparticles are so small, the components often don't stay together and instead quickly separate, like oil and vinegar. In her paper, Millstone describes using small organic molecules to "glue" an alloy in place, so that the two components stay mixed. This strategy led to the discovery of NIR luminescence and also paves the way for other types of nanoparticle alloys that are useful not only in imaging, but in applications like catalysis for the industrial-scale conversion of fossil fuels into fine chemicals.

Millstone says that taken together these observations provide a new platform to investigate the structural origins of small metal nanoparticles' photoluminescence and of alloy formation in general. She believes these studies should lead directly to applications in such areas of national need as health and energy.

The paper, "Photoluminescent Gold-Copper Nanoparticle Alloys with Composition-Tunable Near-Infrared Emission," first appeared online April 3 and later in print April 10 in JACS (Journal of the American Chemical Society). Funding was provided by the University's Central Research Development Fund and administered by Pitt's Office of Research and University Research Council.

####

For more information, please click here

Contacts:
B. Rose Huber

412-624-4356
Cell: 412-328-6008

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Nanomedicine

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Discoveries

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Materials/Metamaterials

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Announcements

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE