Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene joins the race to redefine the ampere

Abstract:
A new joint innovation by the National Physical Laboratory (NPL) and the University of Cambridge could pave the way for redefining the ampere in terms of fundamental constants of physics. The world's first graphene single-electron pump (SEP), described in a paper today in Nature Nanotechnology, provides the speed of electron flow needed to create a new standard for electrical current based on electron charge.

Graphene joins the race to redefine the ampere

Teddington, UK | Posted on May 12th, 2013

The international system of units (SI) comprises seven base units (the metre, kilogram, second, Kelvin, ampere, mole and candela). Ideally these should be stable over time and universally reproducible. This requires definitions based on fundamental constants of nature which are the same wherever you measure them.

The present definition of the Ampere, however, is vulnerable to drift and instability. This is not sufficient to meet the accuracy needs of present and certainly future electrical measurement. The highest global measurement authority, the Conférence Générale des Poids et Mesures, has proposed that the ampere be re-defined in terms of the electron charge.

The frontrunner in this race to redefine the ampere is the single-electron pump (SEP). SEPs create a flow of individual electrons by shuttling them in to a quantum dot - a particle holding pen - and emitting them one at a time and at a well-defined rate. The paper published today describes how a graphene SEP has been successfully produced and characterised for the first time, and confirms its properties are extremely well suited to this application.

A good SEP pumps precisely one electron at a time to ensure accuracy, and pumps them quickly to generate a sufficiently large current. Up to now the development of a practical electron pump has been a two-horse race. Tuneable barrier pumps use traditional semiconductors and have the advantage of speed, while the hybrid turnstile utilises superconductivity and has the advantage that many can be put in parallel. Traditional metallic pumps, thought to be not worth pursuing, have been given a new lease of life by fabricating them out of the world's most famous super-material - graphene.

Previous metallic SEPs made of aluminium are very accurate, but pump electrons too slowly for making a practical current standard. Graphene's unique semimetallic two-dimensional structure has just the right properties to let electrons on and off the quantum dot very quickly, creating a fast enough electron flow - at near gigahertz frequency - to create a current standard. The Achillies heel of metallic pumps, slow pumping speed, has thus been overcome by exploiting the unique properties of graphene.

The scientist at NPL and Cambridge still need to optimise the material and make more accurate measurements, but today's paper marks a major step forward in the road towards using graphene to redefine the ampere.

The realisation of the ampere is currently derived indirectly from resistance or voltage, which can be realised separately using the quantum Hall effect and the Josephson Effect. A fundamental definition of the ampere would allow a direct realisation that National Measurement Institutes around the world could adopt. This would shorten the chain for calibrating current-measuring equipment, saving time and money for industries billing for electricity and using ionising radiation for cancer treatment.

Current, voltage and resistance are directly correlated. Because we measure resistance and voltage based on fundamental constants - electron charge and Planck's constant - being able to measure current would also allow us to confirm the universality of these constants on which many precise measurements rely.

Graphene is not the last word in creating an ampere standard. NPL and others are investigating various methods of defining current based on electron charge. But today's paper suggests graphene SEPs could hold the answer. Also, any redefinition will have to wait until the Kilogram has been redefined. This definition, due to be decided soon, will fix the value of electronic charge, on which any electron-based definition of the ampere will depend.

Today's paper will also have important implications beyond measurement. Accurate SEPs operating at high frequency and accuracy can be used to make electrons collide and form entangled electron pairs. Entanglement is believed to be a fundamental resource for quantum computing, and for answering fundamental questions in quantum mechanics.

Malcolm Connolly, a research associate based in the Semiconductor Physics group at Cambridge, says: "This paper describes how we have successfully produced the first graphene single-electron pump. We have work to do before we can use this research to redefine the ampere, but this is a major step towards that goal. We have shown that graphene outperforms other materials used to make this style of SEP. It is robust, easier to produce, and operates at higher frequency. Graphene is constantly revealing exciting new applications and as our understanding of the material advances rapidly, we seem able to do more and more with it."

This work was funded by an Engineering and Physical Sciences Research Council/National Physical Laboratory (NPL) Joint Postdoctoral Partnership (Grant No: EP/I029575/1 ).

####

For more information, please click here

Contacts:
David Lewis

084-568-01865

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Physics

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Researchers refine method for detecting quantum entanglement June 18th, 2016

Graphene/ Graphite

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Laboratories

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discovery of gold nanocluster 'double' hints at other shape-changing particles: New analysis approach brings two unique atomic structures into focus June 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Molecular Nanotechnology

Discovery of gold nanocluster 'double' hints at other shape-changing particles: New analysis approach brings two unique atomic structures into focus June 19th, 2016

Discovery of gold nanocluster 'double' hints at other shape changing particles: New analysis approach brings two unique atomic structures into focus June 15th, 2016

DNA shaping up to be ideal framework for rationally designed nanostructures: Shaped DNA frames that precisely link nanoparticles into different structures offer a platform for designing functional nanomaterials June 14th, 2016

Nanocars taken for a rough ride: Rice, NC State researchers test single-molecule cars in open air June 1st, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic