Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Flawed Diamonds Promise Sensory Perfection: Berkeley Lab researchers and their colleagues extend electron spin in diamond for incredibly tiny magnetic detectors

Nitrogen-vacancy centers are defects in which a nitrogen atom substitutes for a carbon atom in the lattice and a vacancy left by a missing carbon atom is immediately adjacent, leaving unbonded electrons whose states can be precisely controlled. NV centers occur naturally in diamond or can be created artificially.
Nitrogen-vacancy centers are defects in which a nitrogen atom substitutes for a carbon atom in the lattice and a vacancy left by a missing carbon atom is immediately adjacent, leaving unbonded electrons whose states can be precisely controlled. NV centers occur naturally in diamond or can be created artificially.

Abstract:
From brain to heart to stomach, the bodies of humans and animals generate weak magnetic fields that a supersensitive detector could use to pinpoint illnesses, trace drugs - and maybe even read minds. Sensors no bigger than a thumbnail could map gas deposits underground, analyze chemicals, and pinpoint explosives that hide from other probes.

Flawed Diamonds Promise Sensory Perfection: Berkeley Lab researchers and their colleagues extend electron spin in diamond for incredibly tiny magnetic detectors

Berkeley, CA | Posted on May 10th, 2013

Now scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley, working with colleagues from Harvard University, have improved the performance of one of the most potent possible sensors of magnetic fields on the nanoscale - a diamond defect no bigger than a pair of atoms, called a nitrogen vacancy (NV) center.

The research team's discoveries may eventually enable clocks smaller than computer chips yet accurate to within a few quadrillionths of a second, or rotational sensors quicker and more tolerant of extreme temperatures than the gyroscopes in smart phones. Before long, an inexpensive chip of diamond may be able to house a quantum computer. The team reports their results in Nature Communications.

A sensor made of diamond

Nitrogen vacancy centers are some of the most common defects in diamonds. When a nitrogen atom substitutes for a carbon atom in the diamond crystal and pairs with an adjacent vacancy (where a carbon atom is missing altogether), a number of electrons not bonded to the missing carbon atoms are left in the center.

The electron spin states are well defined and very sensitive to magnetic fields, electric fields, and light, so they can easily be set, adjusted, and read out by lasers.

"The spin states of NV centers are stable across a wide range of temperatures from very hot to very cold," says Dmitry Budker of Berkeley Lab's Nuclear Science Division, who is also a physics professor at UC Berkeley. Even tiny flecks of diamond costing pennies per gram could be used as sensors because, says Budker, "we can control the number of NV centers in the diamond just by irradiating and baking it," that is, annealing it.

The challenge is to keep the information inherent in the spin states of NV centers, once it has been encoded there, from leaking away before measurements can be performed; in NV centers, this requires extending what's called the "coherence" time of the electron spins, the time the spins remain synchronized with each other.

Recently Budker worked with Ronald Walsworth of Harvard in a team that included Harvard's Nir Bar-Gill and UC Berkeley postdoc Andrey Jarmola. They extended the coherence time of an ensemble of NV electron spins by more than two orders of magnitude over previous measurements.

"To me, the most exciting aspect of this result is the possibility of studying changes in the way NV centers interact with one another," says Bar-Gill, the first author of the paper, who will move to Hebrew University in Jerusalem this fall. "This is possible because the coherence times are much longer than the time needed for interactions between NV centers."

Bar-Gill adds, "We can now imagine engineering diamond samples to realize quantum computing architectures." The interacting NV centers take the role of bits in quantum computers, called qubits. Whereas a binary digit is either a 1 or a 0, a qubit represents a 1 and a 0 superposed, a state of Schrödinger's-cat-like simultaneity that persists as long as the states are coherent, until a measurement is made that collapses all the entangled qubits at once.

"We used a couple of tricks to get rid of sources of decoherence," says Budker. "One was to use diamond samples specially prepared to be pure carbon-12." Natural diamond includes a small amount of the isotope carbon-13, whose nuclear spin hurries the decoherence of the NV center electron spins. Carbon-12 nuclei are spin zero.

"The other trick was to lower the temperature to the temperature of liquid nitrogen," Budker says. Decoherence was reduced by cooling the samples to 77 degrees Kelvin, below room temperature but still readily accessible.

Working together in Budker's lab, members of the team mounted the diamond samples inside a cryostat. A laser beam passing through the diamond, plus a magnetic field, tuned the electron spins of the NV centers and caused them to fluoresce. Their fluorescent brightness was a measure of spin-state coherence.

"Controlling the spin is essential," Budker says, "so we borrowed an idea from nuclear magnetic resonance" - the basis for such familiar procedures as magnetic resonance imaging (MRI) in hospitals.

While different from nuclear spin, electron spin coherence can be extended with similar techniques. Thus, as the spin states of the NV centers in the diamond sample were about to decohere, the experimenters jolted the diamond with a series of up to 10,000 short microwave pulses. The pulses flipped the electron spins as they began to fall out of synchronization with one another, producing "echoes" in which the reversed spins caught up with themselves. Coherence was reestablished.

Eventually the researchers achieved spin coherence times lasting over half a second. "Our results really shine for magnetic field sensing and for quantum information," says Bar-Gill.

Long spin-coherence times add to the advantages diamond already possesses, putting diamond NVs at the forefront of potential candidates for practical quantum computers - a favorite pursuit of the Harvard researchers. What Budker's group finds an even hotter prospect is the potential for long coherence times in sensing oscillating magnetic fields, with applications ranging from biophysics to defense.

This work was supported by the Defense Advanced Research Projects Agency's QuASAR program, the National Science Foundation, the Israeli Ministry of Defense, and the North Atlantic Treaty Organization's Science for Peace Program.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Paul Preuss

510-486-6249

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Solid-state electronic spin coherence time approaching one second,” by Nir Bar-Gill, Linh M. Pham, Andrey Jarmola, Dmitry Budker, and Ronald L. Walsworth, appears in the 23 April 2013 edition of Nature Communications, online at:

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Laboratories

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

'Perfect Liquid' Quark-Gluon Plasma is the Most Vortical Fluid: Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity" August 4th, 2017

Announcing the successful industrial feasibility test of a turnkey quantum Hall system for graphene characterisation and primary resistance metrology August 2nd, 2017

Brain-Computer Interfaces

A firefly's flash inspires new nanolaser light July 18th, 2017

Gold & Graphene Make Brain Probes More Sensitive Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/05/tech/graphene-gold-brain-probe/ May 3rd, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Leti demonstrates world’s first alpha-wave measuring system for consumers at CES Unveiled and at its booth: RELAX Headgear Provides New Dimension to Wellness Management In Every Area of Life, From Working to Studying to Exercising or Just Sitting December 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Quantum Computing

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Clarifiying complex chemical processes with quantum computers August 3rd, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers July 6th, 2017

Sensors

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Discoveries

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Homeland Security

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Military

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Research partnerships

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Quantum nanoscience

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project