Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Flawed Diamonds Promise Sensory Perfection: Berkeley Lab researchers and their colleagues extend electron spin in diamond for incredibly tiny magnetic detectors

Nitrogen-vacancy centers are defects in which a nitrogen atom substitutes for a carbon atom in the lattice and a vacancy left by a missing carbon atom is immediately adjacent, leaving unbonded electrons whose states can be precisely controlled. NV centers occur naturally in diamond or can be created artificially.
Nitrogen-vacancy centers are defects in which a nitrogen atom substitutes for a carbon atom in the lattice and a vacancy left by a missing carbon atom is immediately adjacent, leaving unbonded electrons whose states can be precisely controlled. NV centers occur naturally in diamond or can be created artificially.

Abstract:
From brain to heart to stomach, the bodies of humans and animals generate weak magnetic fields that a supersensitive detector could use to pinpoint illnesses, trace drugs - and maybe even read minds. Sensors no bigger than a thumbnail could map gas deposits underground, analyze chemicals, and pinpoint explosives that hide from other probes.

Flawed Diamonds Promise Sensory Perfection: Berkeley Lab researchers and their colleagues extend electron spin in diamond for incredibly tiny magnetic detectors

Berkeley, CA | Posted on May 10th, 2013

Now scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley, working with colleagues from Harvard University, have improved the performance of one of the most potent possible sensors of magnetic fields on the nanoscale - a diamond defect no bigger than a pair of atoms, called a nitrogen vacancy (NV) center.

The research team's discoveries may eventually enable clocks smaller than computer chips yet accurate to within a few quadrillionths of a second, or rotational sensors quicker and more tolerant of extreme temperatures than the gyroscopes in smart phones. Before long, an inexpensive chip of diamond may be able to house a quantum computer. The team reports their results in Nature Communications.

A sensor made of diamond

Nitrogen vacancy centers are some of the most common defects in diamonds. When a nitrogen atom substitutes for a carbon atom in the diamond crystal and pairs with an adjacent vacancy (where a carbon atom is missing altogether), a number of electrons not bonded to the missing carbon atoms are left in the center.

The electron spin states are well defined and very sensitive to magnetic fields, electric fields, and light, so they can easily be set, adjusted, and read out by lasers.

"The spin states of NV centers are stable across a wide range of temperatures from very hot to very cold," says Dmitry Budker of Berkeley Lab's Nuclear Science Division, who is also a physics professor at UC Berkeley. Even tiny flecks of diamond costing pennies per gram could be used as sensors because, says Budker, "we can control the number of NV centers in the diamond just by irradiating and baking it," that is, annealing it.

The challenge is to keep the information inherent in the spin states of NV centers, once it has been encoded there, from leaking away before measurements can be performed; in NV centers, this requires extending what's called the "coherence" time of the electron spins, the time the spins remain synchronized with each other.

Recently Budker worked with Ronald Walsworth of Harvard in a team that included Harvard's Nir Bar-Gill and UC Berkeley postdoc Andrey Jarmola. They extended the coherence time of an ensemble of NV electron spins by more than two orders of magnitude over previous measurements.

"To me, the most exciting aspect of this result is the possibility of studying changes in the way NV centers interact with one another," says Bar-Gill, the first author of the paper, who will move to Hebrew University in Jerusalem this fall. "This is possible because the coherence times are much longer than the time needed for interactions between NV centers."

Bar-Gill adds, "We can now imagine engineering diamond samples to realize quantum computing architectures." The interacting NV centers take the role of bits in quantum computers, called qubits. Whereas a binary digit is either a 1 or a 0, a qubit represents a 1 and a 0 superposed, a state of Schrödinger's-cat-like simultaneity that persists as long as the states are coherent, until a measurement is made that collapses all the entangled qubits at once.

"We used a couple of tricks to get rid of sources of decoherence," says Budker. "One was to use diamond samples specially prepared to be pure carbon-12." Natural diamond includes a small amount of the isotope carbon-13, whose nuclear spin hurries the decoherence of the NV center electron spins. Carbon-12 nuclei are spin zero.

"The other trick was to lower the temperature to the temperature of liquid nitrogen," Budker says. Decoherence was reduced by cooling the samples to 77 degrees Kelvin, below room temperature but still readily accessible.

Working together in Budker's lab, members of the team mounted the diamond samples inside a cryostat. A laser beam passing through the diamond, plus a magnetic field, tuned the electron spins of the NV centers and caused them to fluoresce. Their fluorescent brightness was a measure of spin-state coherence.

"Controlling the spin is essential," Budker says, "so we borrowed an idea from nuclear magnetic resonance" - the basis for such familiar procedures as magnetic resonance imaging (MRI) in hospitals.

While different from nuclear spin, electron spin coherence can be extended with similar techniques. Thus, as the spin states of the NV centers in the diamond sample were about to decohere, the experimenters jolted the diamond with a series of up to 10,000 short microwave pulses. The pulses flipped the electron spins as they began to fall out of synchronization with one another, producing "echoes" in which the reversed spins caught up with themselves. Coherence was reestablished.

Eventually the researchers achieved spin coherence times lasting over half a second. "Our results really shine for magnetic field sensing and for quantum information," says Bar-Gill.

Long spin-coherence times add to the advantages diamond already possesses, putting diamond NVs at the forefront of potential candidates for practical quantum computers - a favorite pursuit of the Harvard researchers. What Budker's group finds an even hotter prospect is the potential for long coherence times in sensing oscillating magnetic fields, with applications ranging from biophysics to defense.

This work was supported by the Defense Advanced Research Projects Agency's QuASAR program, the National Science Foundation, the Israeli Ministry of Defense, and the North Atlantic Treaty Organization's Science for Peace Program.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Paul Preuss

510-486-6249

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Solid-state electronic spin coherence time approaching one second,” by Nir Bar-Gill, Linh M. Pham, Andrey Jarmola, Dmitry Budker, and Ronald L. Walsworth, appears in the 23 April 2013 edition of Nature Communications, online at:

Related News Press

News and information

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Laboratories

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases August 17th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New ORNL hybrid microscope offers unparalleled capabilities August 10th, 2015

Brain-Computer Interfaces

Bonelike 3-D silicon synthesized for potential use with medical devices: Semiconducting silicon spicules engage tissue like a bee stinger July 8th, 2015

Nano memory cell can mimic the brain’s long-term memory May 14th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

On the frontiers of cyborg science August 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Spintronics

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Spintronics just got faster July 20th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Quantum Computing

A little light interaction leaves quantum physicists beaming August 25th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New optical chip lights up the race for quantum computer August 14th, 2015

Quantum computing advance locates neutral atoms August 12th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Discoveries

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Announcements

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Homeland Security

Nanopaper as an optical sensing platform July 23rd, 2015

Iranian Scientists Design Nano Device to Detect Cyanogen Toxic Gas June 23rd, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Military

Seeing quantum motion August 30th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Energy

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Research partnerships

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Quantum nanoscience

Seeing quantum motion August 30th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic