Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Engineers fine-tune the sensitivity of nano-chemical sensor: Tweaking graphene chemical sensors may open up many applications

Abstract:
Researchers have discovered a technique for controlling the sensitivity of graphene chemical sensors.

The sensors, made of an insulating base coated with a graphene sheet--a single-atom-thick layer of carbon--are already so sensitive that they can detect an individual molecule of gas. But manipulating the chemical properties of the insulating layer, without altering the graphene layer, may yet improve their ability to detect the most minute concentrations of various gases.

Engineers fine-tune the sensitivity of nano-chemical sensor: Tweaking graphene chemical sensors may open up many applications

Chicago, IL | Posted on May 8th, 2013

The finding "will open up entirely new possibilities for modulation and control of the chemical sensitivity of these sensors, without compromising the intrinsic electrical and structural properties of graphene," says Amin Salehi-Khojin, assistant professor of mechanical and industrial engineering at the University of Illinois at Chicago, and principal investigator on the study. He and his coworkers at the UIC College of Engineering collaborated with researchers from the Beckman Institute and the Micro and Nanotechnology Laboratory at the University of Illinois at Urbana-Champaign and two institutions in Korea. Their findings are reported in the journal Nano Letter, available online in advance of publication.

Since its discovery nearly 10 years ago, graphene--in sheets, or rolled into nanotubes--has attracted huge scientific interest. Composed of a single layer of carbon atoms, graphene has potential for use in hundreds of high-tech applications. Its 2-D structure, exposing its entire volume, makes it attractive as a highly sensitive gas detector.

Salehi-Khojin's team, and others, earlier found that graphene chemical sensors depended on a structural flaw around a carbon atom for their sensitivity. They set out to show that "pristine" graphene sensors--made of graphene that was perfectly flawless—wouldn't work. But when they tested these sensors, they found they were still sensitive to trace gas molecules.

"This was a very surprising result," Salehi-Khojin said.

The researchers tested the sensor layer by layer. They found that pristine graphene is insensitive, as they had predicted.

They next set about removing any flaws, or reactive sites called dangling bonds, from the insulating layer. When a pristine insulating layer was tested with pristine graphene, again there was no sensitivity.

"But when dangling bonds were added back onto the insulating layer, we observed a response," said Bijandra Kumar, a post-doctoral research associate at UIC and first author of the Nano Letter study.

"We could now say that graphene itself is insensitive unless it has defects--internal defects on the graphene surface, or external defects on the substrate surface," said UIC graduate student Poya Yasaei.

The finding opens up a new "design space," Salehi-Khojin said. Controlling external defects in the supporting substrates will allow graphene chemFETs to be engineered that may be useful in a wide variety of applications.

K. Min, A. Barati Farimani, D. Estrada, E. Pop, and N.R. Aluru of the University of Illinois at Urbana-Champaign; M.-H. Bae of UIUC and the Korea Research Institute of Standards and Science; and Y.D. Kim and Y.D. Park of Seoul National University also contributed to the study.

The study was funded by UIC.

####

About University of Illinois at Chicago
UIC ranks among the nation's leading research universities and is Chicago's largest university with 27,500 students, 12,000 faculty and staff, 15 colleges and the state's major public medical center. A hallmark of the campus is the Great Cities Commitment, through which UIC faculty, students and staff engage with community, corporate, foundation and government partners in hundreds of programs to improve the quality of life in metropolitan areas around the world.

For more information, please click here

Contacts:
Jeanne Galatzer-Levy

312-996-1583

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

News and information

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Sensors

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Discoveries

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE