Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Development know-how is made available to collaboration partners: Bayer MaterialScience brings nano projects to a close

Abstract:
Bayer MaterialScience intends to focus its development activities more intently on topics that are closely linked to its core business. For that reason the company will bring its work on carbon nanotubes (CNTs) to a close. Precisely how the research results and know-how for the production and application CNT will be used further will be determined shortly.

Development know-how is made available to collaboration partners: Bayer MaterialScience brings nano projects to a close

Leverkusen, Germany | Posted on May 8th, 2013

Researchers from Bayer MaterialScience had collaborated with external partners in recent years to resolve complex issues related to the safe production of specific carbon nanotubes. Methods for scaling up the production processes were developed, as were new generations of catalysts and new types of products.

Important know-how developed

Much of the knowledge gleaned over recent years was made available to other companies and research institutions within the Innovation Alliance Carbon Nanotubes (Inno.CNT), which counts Bayer MaterialScience among its roughly 90 members.

"We remain convinced that carbon nanotubes have huge potential," says Patrick Thomas, Chief Executive Officer of Bayer MaterialScience. It has been found, however, that the potential areas of application that once seemed promising from a technical standpoint are currently either very fragmented or have few overlaps with the company's core products and their application spectrum.

"For Bayer MaterialScience, groundbreaking applications for the mass market relating to our own portfolio and therefore comprehensive commercialization are not likely in the foreseeable future," says Thomas. Nonetheless, this know-how provides an important basis for a possible later use of CNT, for example in the optimization of lithium ion batteries, Thomas says. "We are currently in contact with potential interested parties regarding the specific application of the know-how generated," Thomas adds.

The conclusion of the nano projects has no impact on the headcount. All 30 people employed in this sector will be transferred to other suitable positions within the Group.

####

About Bayer MaterialScience
With 2012 sales of EUR 11.5 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and the sports and leisure industries. At the end of 2012, Bayer MaterialScience had 30 production sites and employed approximately 14,500 people around the globe. Bayer MaterialScience is a Bayer Group company.

Forward-Looking Statements

This release may contain forward-looking statements based on current assumptions and forecasts made by Bayer Group or subgroup management. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Bayer’s public reports which are available on the Bayer website at www.bayer.com. The company assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.

For more information, please click here

Contacts:
Stefan Paul Mechnig
Tel. +49 214 30-36352

Copyright © Bayer MaterialScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Materials/Metamaterials

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project