Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New technique can help nanoparticles deliver drug treatments

Joshua Reineke, Ph.D.
Joshua Reineke, Ph.D.

Abstract:
A Wayne State University researcher has successfully tested a technique that can lead to more effective use of nanoparticles as a drug delivery system.

New technique can help nanoparticles deliver drug treatments

Detroit, MI | Posted on May 7th, 2013

Joshua Reineke, Ph.D., assistant professor of pharmaceutical sciences in the Eugene Applebaum College of Pharmacy and Health Sciences, examined how a biodegradable polymer particle called polylactic-co-glycolic acid (PLGA) breaks down in live tissue.

He believes the potential impact of his work is broad, as nanoparticles increasingly have been developed as carriers of drug treatments for numerous diseases and as imaging agents; they also are used in numerous consumer products. The kinetics of nanoparticle biodegradation is an important factor that can control how and where a drug is released, impacting treatment efficacy as well as potential toxicity to nontarget tissues from nanoparticle exposure.

"If nanoparticles given to a patient release a drug before particles can ever get to target tissue, then we get high toxicity and low effect," Reineke said. "Conversely, if particles are drawn to a tissue but don't release the drug until long afterward, then we also don't get the therapeutic effect."

Much previous research has studied nanoparticle biodegradation in vitro, but Reineke and the study's lead author, Abdul Khader Mohammad, Ph.D., a recent WSU graduate, believe they are the first to quantify biodegradation rates after systemic administration.

Their study, "Quantitative Detection of PLGA Nanoparticle Degradation in Tissues following Intravenous Administration," was published recently in the journal Molecular Pharmaceutics. It was supported by funds from the Department of Pharmaceutical Sciences and the Office for the Vice President of Research at Wayne State.

Keeping concentration levels the same, Reineke and Mohammad administered PLGA as particles in sizes of 200 and 500 nanometers (nm) intravenously in mice, an important administration route of nanomedicines for cancer applications, for example, and measured the quantity of the nanoparticles in all tissues and the rates at which it degraded. They then compared those rates to those predicted by in vitro measurements.

Reineke said the 200 nm particles degraded much faster in the body than in vitro, while the 500 nm particles degraded similarly to in vitro analyses. The liver and spleen had the highest concentration of polymers and therefore were easiest to analyze.

Researchers found that 500 nm particles degraded faster in the liver than the spleen, but for the 200 nm size the degradation rate in the liver and the spleen were similar.

"It's known that larger particles degrade differently, and we verified that," Reineke said, "but they didn't quite degrade in vivo the way we would expect. We found that among tissue types there are differences in how they degrade."

"That tells us that in vitro degradation doesn't predict in vivo degradation very well, because we see so many differences."

Reineke said that by in vivo testing of other types of nanoparticles, a mathematical model can be developed to help determine which are most effective and have the lowest toxicity for a given application.

"Optimizing a therapeutic system that utilizes nanoparticles is really about getting that timing correct. In order to do that, we have to know how and when the particles are going to release the drug."

####

About Wayne State University - Office of the Vice President for Research
Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world.

For more information, please click here

Contacts:
Julie O'Connor

313-577-8845

Copyright © Wayne State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE